Рубрика «расчет орбиты»

Фильм «Скрытые фигуры»: задачи из фильма и современный подход к расчетам орбиты и возвращения на Землю - 1

Перевод поста Джеффри Брайанта (Jeffrey Bryant), Пако Джейна (Paco Jain) и Майкл Тротта (Michael Trott) "Hidden Figures: Modern Approaches to Orbit and Reentry Calculations".
Код, приведенный в статье, можно скачать здесь.
Выражаю огромную благодарность Полине Сологуб за помощь в переводе и подготовке публикации


Содержание

Размещение спутника в определенном месте
Константы и первичная обработка
Вычисления
Построение графика
Как рассчитываются орбиты сегодня
Моделирование возвращаемого спутника


Вышедший недавно в кинотеатрах фильм Скрытые фигуры получил хорошие отзывы. Действие разворачивается в важный период истории США; в нем затрагивается также ряд тем вроде гражданских прав и космической гонки. В центре повествования — история Кэтрин Джонсон и ее коллег (Дороти Воган и Мэри Джексон) из NASA в период развертывания программы Меркурий и ранних исследований пилотируемых космических полетов. Внимание также акцентируется на драматической борьбе за гражданские права афро-американских женщин в NASA, происходившей в то время. Компьютеры в то время едва появились, так что способность Джонсон и ее коллег решать сложные навигационные задачи орбитальной механики без использования компьютера обеспечили важную проверку ранних компьютерных результатов.

Фильм «Скрытые фигуры»: задачи из фильма и современный подход к расчетам орбиты и возвращения на Землю - 2

Я остановлюсь на двух аспектах ее научной работы, упомянутых в фильме: вычислениях орбиты и расчетах, связанных с вхождением в атмосферу. Для орбитальных вычислений я сначала сделал ровно то же, что и Джонсон, а затем применил более современный прямой подход с использованием инструментов Wolfram Language. В фильме упоминается о решении дифференциальных уравнений методом Эйлера; я же буду сравнивать этот метод с более современным и вычислю возвратную траекторию с помощью данных модели атмосферы, полученных непосредственно из Wolfram Language).
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js