Всем привет, меня зовут Александр и я врач-гематолог. Для справки, это тот, кто занимается болезнями крови. Мой общий стаж перевалил за 16 лет, я кандидат медицинских наук и последние пару-тройку лет интересуюсь анализом данных, machine learning и ИИ в медицине. Под "интересуюсь" я подразумеваю исследования и публикации по этим темам, а также обучение и саморазвитие.
Рубрика «R»
Как врач сделал себе ИИ помощника
2023-01-03 в 19:47, admin, рубрики: R, гематология, здоровье, искусственный интеллект, машинное обучение, медицина, медицина будущегоГенерация конвейеров обработки данных в Dataflow
2022-12-23 в 13:00, admin, рубрики: big data, dataflow, netflix, pyspark, R, ruvds_перевод, scala, Администрирование баз данных, Блог компании RUVDS.com, конвейеры данных, пайплайны, рабочие потокиЭта статья посвящена всем практикующим специалистам по данным, заинтересованным в освоении запуска, стандартизации и автоматизации пакетных конвейеров данных в Netflix.
О Dataflow мы писали в статье под названием Data pipeline asset management with Dataflow. Та статья представляла подробное знакомство с одним из наиболее технических аспектов Dataflow, но сам этот инструмент толком не описывала. На сей раз мы оправдаем заявленное вступление, после чего сосредоточимся на одной из основных возможностей Dataflow — образцах рабочих потоков. Для начала же мы коротко разберём Dataflow в общем.Читать полностью »
Регрессия и функции с неустранимыми разрывами первого рода
2022-02-19 в 14:20, admin, рубрики: R, регрессия, функции, язык rО пакете BinSeqBstrap
Постановка задачи
Допустим, у нас есть какая кусочно-гладкая функция f(x), к который прибавлен некий случайный шум, соответствующий условиям Гаусса-Маркова. И все хорошо, только эта самая функция f(x) – функция с неустранимым(-и) разрывом(-ами) первого рода, то есть в какой-то точке левый и правый предел этой функции равны разным числам, а у функции есть скачок. Задача – как-то нужно научить алгоритм распознавать этот скачок.
Минутка теории
Теоретические основы изложены в виньетке, написанной Кэти МакДэйд и Флориана Пэйна из Кэмбриджа, опубликованной Читать полностью »
Рефакторинг Shiny приложений
2022-02-05 в 13:12, admin, рубрики: data mining, data science, R, аналитика данных, Проектирование и рефакторинг, рефакторинг
Кадр из фильма «Формула любви», 1984
В жизненном цикле любого эксплуатируемого ПО наступает фаза, когда накопившийся набор изменений (CR) ложится неподъемным грузом на первичную архитектуру и вот тут наступает пора рефакторинга. Много книг понаписано на эту тему, есть специфика для различных языков. Ниже затронем только отдельные аспекты, которые могут оказаться полезным применительно к RStudio Shiny приложениям. Это ряд практических методов, трюков и нюансов, накопившихся при рефакторинге, как правило, чужого Shiny кода.
«Aliena nobis, nostra aliis» — Ежели один человек построил, другой завсегда разобрать сможет.
Это было в фильме, в первоисточнике несколько по-другому. Фраза Публилия Сира «Aliena nobis, nostra plus aliis placent» переводится как «Чужое нам, наше же в основном другим нравится». Но кузнец Степан все равно дело говорит.
Является продолжением серии предыдущих публикаций. Читать полностью »
Войти вайти в 37 лет, личный опыт
2021-11-27 в 14:28, admin, рубрики: Canada, Data Analyst, data analytics, immigration, job, R, TensorFlow, биология, искусственный интеллект, машинное обучениеСейчас мне сорок пять, и я наконец получил нормальную фултайм позицию аналитика данных. У меня первый диплом - Провизор по специальности Фармация. Я успел поработать таксистом, разнорабочим на складе лекарственных трав, заготовщиком, владельцем цеха металлообработки и одновременно рабочим в этом цеху. Был фармацевтом за кассой, заместителем заведующей аптекой, владельцем аптеки. Никогда не думал, что буду работать в IT, хотя всегда интересовался этой темой.
Но потом случился мой переезд в Канаду, один разговор и восемь лет приключений. Начну по порядку.
Путь, который занял 100* лет: встречаем CatBoost 1.0.0
2021-10-01 в 10:09, admin, рубрики: Apache Spark, catboost, open source, R, Блог компании Яндекс, машинное обучение, распределенные системы, релизыВсем привет. Меня зовут Станислав Кириллов, я работаю в команде, которая отвечает за развитие библиотеки машинного обучения CatBoost. Мы впервые поделились ей с сообществом четыре года назад — хотя мы привыкли строить бинарные деревья, поэтому и отсчёт лет предпочитаем вести так же. Это шутка, конечно, но «столетие» — хороший повод для выпуска первой «production ready» версии библиотеки с символичным номером 1.0.0.
Сегодня я кратко отвечу, почему мы считаем выпуск версии 1.0.0 важной вехой, и подсвечу главные изменения (и в новой версии, и в целом за год). А уже завтра выступлю с рассказом на встрече, которая будет целиком и полностью посвящена практике применения CatBoost и противостоянию нейросетей и градиентного бустинга. Если эти слова для вас что-то значат, то добро пожаловать под кат.
Разработка (dev) и data science в enterprise — битва за ресурсы или эффективное сотрудничество?
2021-07-05 в 9:01, admin, рубрики: data science, devops, python, R, ruvds_статьи, Анализ и проектирование систем, архитектура по, Блог компании RUVDS.com, проектирование по, управление проектами, управление разработкой
В подавляющем большинстве случаев, когда речь заходит о «настоящей» разработке продукта или решения enterprise уровня, сразу появляются корпоративные архитекторы и глобальные архитектуры и шаблоны, высокоуровневые модели данных и концепты, попытки охватить всё и вся. Формируется шорт лист из языков и фреймворков, в рамках которых идет вся последующая разработка. Все «только на Java» или «только на C#» или… (впишите на свое усмотрение).
Несомненно, это является отражением предыдущего проектного опыта, лучших мировых практик, готовности подхватить новые запросы бизнеса и в общем случае такой подход оправдан. Но в каждом частном случае подобный глобализм на этапе взлета продукта, в тот момент, когда многое еще находится в состоянии неопределенности, может просто погрести под собой начинание и превратить проект в очередную неудачу. Можно ли что-то изменить, упростить и улучшить не теряя при этом в качестве?
Оказывается что это вполне возможно за счет объединения классической разработки ПО с инструментами и подходами data science (далее просто DS). Как этого можно достичь — разберем по шагам.
Материал является продолжением серии предыдущих публикаций.
Читать полностью »
Запросить 100 серверов нельзя оптимизировать код. Ставим запятую
2021-06-15 в 16:34, admin, рубрики: big data, BigData, data science, python, R, ruvds_статьи, Алгоритмы, Блог компании RUVDS.comМожно выделить ряд алгоритмов, которые являются базовыми и лежат в основе практически каждой строчки программ, написанных на языках высокого уровня. Хорошо иметь под руками классический многотомный труд Дональда Кнута "The Art of Computer Programming", там детально разобраны многие базовые алгоритмы. Но прочесть и усвоить все — задача, требующая много усилий и времени, которая должна как-то быть мотивирована.
Многие могут предположить, что нюансы необходимо было знать 50 лет назад, а сейчас можно пользоваться готовыми пакетами и функциями и не погружаться в детали. Однако, это далеко не так. Равно как никто не отменял важность понимания представления методов хранения данных в памяти и их обработки в процессоре.
Далее разберем нюансы на примере функций сортировки. Сортировка и поиск используются максимально часто во всех манипуляциях с данными. Экономия нескольких миллисекунд на операции может приводить к суммарному сокращению часов расчета на значительных данных.
Является продолжением серии предыдущих публикаций.
Моя музыка 2020 года в картинках и графиках
2020-12-26 в 11:43, admin, рубрики: ggplot2, R, wordcloud, визуализация, визуализация данных, графики, Занимательные задачки, Инфографика, исследование, музыка, статистикаИногда я пишу научные статьи. Но перед Новым годом хочется немного отвлечься от звериной серьёзности науки. Значит, можно написать несерьёзную и не совсем научную! Но — основанную на данных и их статистическом анализе, с графиками и воспроизводимыми результатами.
Введение
Ускорение в 14 000 раз или Победа компьютерной науки
2020-10-20 в 15:35, admin, рубрики: R, Алгоритмы, вычислительная сложность, двоичный алгоритм, Занимательные задачки, информатика, оптимизация, Проектирование и рефакторингКак разработчику научного ПО мне приходится много программировать. И большинство людей из других научных областей склонны думать, что программирование — это «просто» набросать код и запустить его. У меня хорошие рабочие отношения со многими коллегами, в том числе из других стран… Физика, климатология, биология и т. д. Но когда дело доходит до разработки ПО, то складывается отчётливое впечатление, что они думают: «Эй, что тут может быть сложного?! Мы просто записываем несколько инструкций о том, что должен сделать компьютер, нажимаем кнопку „Выполнить” и готово — получаем ответ!»
Проблема в том, что невероятно легко написать инструкции, которые означают не то, что вы думаете. Например, программа может совершенно не поддаваться интерпретации компьютером. Кроме того, нет буквально никакого способа определить, завершится ли программа вообще, не выполнив её. И есть много, очень много способов сильно замедлить выполнение программы. В смысле… реально замедлить. Так замедлить, что выполнение займёт всю вашу жизнь или больше. Это чаще всего происходит с программами, которые написаны людьми без компьютерного образования, то есть учёными из других областей. Моя работа — исправлять такие программы.
Люди не понимают, что информатика учит вас теории вычислений, сложности алгоритмов, вычислимости (то есть можем ли мы действительно что-то вычислить? Слишком часто мы считаем само собой разумеющимся, что можем!) Информатика даёт знания, логику и методы анализа, помогающие написать код, который выполнится за минимальное количество времени или с минимальным использованием ресурсов.
Читать полностью »