Рубрика «pytorch» - 2

Документальный фильм о фреймворке, который изменил мир AI - 1

Дэвид Касселл, автор статей для таких изданий, как CNN, MSNBC и Wall Street Journal Interactive Edition, рассказывает о PyTorch, фреймворке глубокого обучения, который используют более 60% AI-специалистов, через призму сюжета документального фильма “Powering the AI Revolution”. Мы выделили и перевели самые интересные моменты из его статьи.

Читать полностью »

Можно ли делать нейросети без обучения? Без кучи тестовых примеров?

Ну оочень простое судоку.

Ну оочень простое судоку.

Читать полностью »

Для того, чтобы распознавать естественную человеческую речь, используют специальные модели — языковые. Они умеют воспринимать содержание текста, продолжать предложения и вести осмысленный диалог.

Вместе с дата-сайентистом и биоинформатиком Марией Дьяковой подготовили подробный гайд о том, как устроены самые популярные языковые модели и что нужно знать, чтобы начать с ними работать.

Как подружить PyTorch и видеокарты AMD с помощью pytorch_dlprim - 1

Когда начинаешь изучать или использовать машинное обучение, то думаешь, как приспособить те устройства, которые есть в наличии, чтобы снизить свои траты на вход. И, в частности, обладатели довольно мощных старых карт AMD (типа AMD Fury), на которых легко идут довольно тяжёлые игры типа Cyberpunk 2077 или Atomic Heart, сталкиваются с тем, что эти GPU бесполезны для PyTorch и других фреймворков машинного обучения. Да и самые современные карты AMD 7900-й серии работают с PyTorch только из под Linux. Также есть редкие карты других брендов, типа Intel Arc или китайские, которые хотелось бы использовать для машинного обучения.

Итак, в этой статье я приведу подход, который в некоторых случаях может помочь. Он сыроват, но других работающих вариантов под PyTorch я не нашёл. Итак, речь пойдёт о проекте израильского разработчика Артёма Бейлиса (Тонких) pytorch_dlprim.
Читать полностью »

Слияние словарей в PyTorch: зачем нужно и подводные камни - 1


Сейчас нейросети стали настолько большими, что обучение большой сети на 1 видеокарте технически невозможно или займёт десятки и сотни лет. Кроме того, на большой обучающей выборке всплывают проблемы забывания сетью того, чему её учили вначале.

Одним из способов решения этих проблем является разбивка датасета на куски, и обучение одной и той же нейросети параллельно на разных устройствах. Потом, очевидно, нужно каким-то образом слить обученные нейросети в одну. Обсудим в этой статье детальнее, зачем это вообще может быть нужно, и как это сделать более-менее правильно.
Читать полностью »

Работаем с PyTorch на CPU - 1

В этой статье мы рассмотрим железо, настройки, подводные камни и неочевидные вещи, которые позволят выжать всё из вашего процессора для как можно более комфортной работы PyTorch на CPU. Даже если у вас есть видеокарта, поддерживаемая PyTorch, вы сможете увеличить продуктивность компа через распараллеливание нагрузки на CPU и видеокарту.Читать полностью »

Обучение Russian SuperGLUE моделей с помощью библиотеки DeepPavlov - 1

Соревнования GLUE и SuperGLUE

В последние годы соревнования GLUE и SuperGLUEЧитать полностью »

Неинтересная цель этой статьи — показать, как можно смержить две свертки пайторча в одну. Если интересна лишь реализация — прошу в конец статьи.

А интересная цель — потыкать непосредственно в веса моделей на примере объединения свёрток. Узнать, как они хранятся и используются конкретно в pytorch, не вдаваясь в хардкорные интересности по типу im2col.
Но перед тем, как показывать реализацию, давайте немного вспомним, с чем работаем.

Читать полностью »

Если вам хочется разбавить общение в telegram чате нелепыми, но зачастую меткими и смешными комментариями, или вы ищете информацию по интеграции языковой модели в бота, или хотите сами обучить языковые модели на данных с 2ch, то в этой статье описаны шаги, как это сделать.

Бот

Запустил бота, которого можно добавлять в чаты, и он будет отвечать на сообщения, как на посты на 2ch.hk/b/.

Для этого:

Рис.1 Vox-модель c графическими паттернами
Рис.1 Vox-модель c графическими паттернами

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js