Рубрика «python» - 62

Статей с подобными заголовками существует уже множество. Но в них постоянно какая-то дичь! Смотрите, Google ещё до основных результатов советует такое:

Какой язык программирования учить в 2020-м? - 1

HCL, Карл! Язык, который не просто очень далёк от «Самых Популярных», но ещё и создан для конфигурации, так что его вообще странно ставить в один ряд с языками общего назначения. Страшно представить приключения новичка, который решит строить карьеру по таким советам. Начнём с того, что по запросу «как выучить HCL» вместо туториалов по языку вылезают тексты о соляной кислоте.

Это только одна из многих дикостей, которые я встретил в подобных текстах. Поэтому захотелось объяснить, что с ними не так — и написать собственный текст получше, ссылку на который можно кидать начинающим. Конечно, аудитории Хабра информация для начинающих не очень требуется, зато читатели могут дополнить текст в комментариях, сделав его ещё полезнее.

Читать полностью »

Всем привет, меня зовут Фёдор Индукаев, я работаю аналитиком в Яндекс.Маршрутизации. Сегодня хочу рассказать вам про задачу визуализации пересекающихся множеств и про пакет для Python с открытым кодом, созданный мной для её решения. В процессе мы узнаем, чем различаются диаграммы Венна и Эйлера, познакомимся с сервисом распределения заказов и по касательной заденем такую область науки, как биоинформатика. Двигаться будем от простого к более сложному. Поехали!

Как построить диаграмму Венна с 50 кругами? Визуализация множеств и история моего Python-проекта с открытым кодом - 1

Читать полностью »

Введение

Мы в компании создаем сервис, который позволяет автоматически создавать, управлять и безопасно хранить лицензионные соглашения и прочие договоры между фрилансерами и их клиентами.

Для решения это задачи я опробовал десятки решений в области обработки естественного языка, в том числе решения с открытым кодом и хотел бы поделиться опытом работы с open source Python — библиотеками для распознавания именованных сущностей.

Распознавание именованных сущностей

Несколько слов о самой проблеме. Named Entity Recognition (NER) — это направление технологии обработки человеческого языка, программная реализация которой позволяет находить в речи и тексте опредмеченные категории слов и словосочетаний. Сначала это были географические наименования, имена людей, организаций, адреса, однако в настоящее время это понятие сильной расширилось и с помощью NER мы ищем в тексте относительные и абсолютные даты, числа, номера и т.д.
Выявление именованных сущностей — это «ворота» в человеческий язык, оно позволяет выявлять и обрабатывать намерения человека, устанавливать связи слов в его речи и реальным миром.

Читать полностью »

image

Продолжаю публикацию решений отправленных на дорешивание машин с площадки HackTheBox.

В данной статье эксплуатируем XXE в сервисе преобразования DOCX документов в PDF, получаем RCE через LFI, копаемся в истории GIT и восстанавливаем файлы, составляем ROP цепочки с помощью pwntools и находим спрятанный файл рута.

Подключение к лаборатории осуществляется через VPN. Рекомендуется не подключаться с рабочего компьютера или с хоста, где имеются важные для вас данные, так как Вы попадаете в частную сеть с людьми, которые что-то да умеют в области ИБ :)

Организационная информация

Чтобы вы могли узнавать о новых статьях, программном обеспечении и другой информации, я создал канал в Telegram и группу для обсуждения любых вопросов в области ИиКБ. Также ваши личные просьбы, вопросы, предложения и рекомендации рассмотрю лично и отвечу всем.
Читать полностью »

Новая версия ожидается только в октябре, но уже можно почитать, что нас ждет в ней и потестить предварительный релиз.
В этой статье самые интересные, на мой взгляд, изменения.
Что нового ожидается в Python 3.9 - 1
Во-первых, нам напоминают, что слои, поддерживающие обратную совместимость с версией 2.7, потихоньку удаляют и просят обратить внимание на DeprecationWarning и устранить их. Несколько предупреждений еще останутся в 3.9, но лучше избавляться и от них.
Читать полностью »

Кому на бюджете жить хорошо? - 1

ВСТУПЛЕНИЕ

В каком году — рассчитывай,
В какой земле — угадывай,
На столбовой дороженьке
Сошлись семь мужиков:
Семь временнообязанных,
Подтянутой губернии,
Уезда Терпигорева,
Пустопорожней волости,
Из смежных деревень:
Заплатова, Дырявина,
Разутова, Знобишина.
Горелова, Неелова —
Неурожайка тож,
Сошлися — и заспорили:
Кому живется весело,
Вольготно на Руси?

Н.Некрасов

Пару месяцев назад на одном IT мероприятии мне довелось лицезреть в работе Pandas. Парень, который с ним работал не делал ничего особенно удивительного. Но простые сложения значений, вычисления средних, группировки проиводились так виртуозно, что, даже при всей своей предвзятости к Питону, я был очарован. Манипуляции выполнялись на довольно приличных датасетах по данным капитального ремонта за период кажется с 2004 по 2019 год. Сотни тысяч строк, но все работало очень быстро.

В общем когда мне еще через пару месяцев пришлось кое-что анализировать, я решил попробовать сделать это с помощью Pandas. Провозился пару дней с тем, что с помощью Excel я бы смог сделать за день. Тем не менее мне удалось.

С апреля мы все сидим на карантине. Сидел я и думал, что бы мне такое сделать, чтобы не очень сложное и чтобы стильно и модно было. К тому времени я уже видел кучу всякой инфографики про коронавирус, про пожары в лесу, про выборы. Делать то, что уже делали не хотелось, да и браться сразу за сложное не решался, сомневаясь, что смогу закончить. Тут мне попалась какая-то статья про уже отшумевшее явление "barchart race" или по-русски "гонки столбчатых диаграмм". Вы можете подумать, что эта статья будет про barchart race. Да, но только отчасти. Barchart race будет только в конце, а статья скорее о том, как не обладая, какими-то выдающимися способностями и знаниями в области матана и прочей черной магии, можно сделать анализ больших данных и представить результат в доступной для широких масс форме. Итак, поехали.

Читать полностью »

MASK-RCNN для поиска крыш по снимкам с беспилотников - 1

В белом-белом городе на белой-белой улице стояли белые-белые дома… А как быстро вы можете найти все крыши домов на этой фотографии?

Все чаще можно слышать про планы правительства провести полную инвентаризацию объектов недвижимости с целью уточнения кадастровых данных. Для первичного решения этой задачи можно применить простой способ, основанный на расчете площади крыш капитальных строений по аэрофотоснимкам и дальнейшее сопоставление с кадастровыми данными. К сожалению, ручной поиск и расчет занимает много времени, а поскольку новые дома сносятся и строятся непрерывно, то расчет требуется повторять снова и снова. Сразу возникает гипотеза, что этот процесс можно автоматизировать с помощью  алгоритмов машинного обучения, в частности, Computer Vision. В этой статье я расскажу о том, как мы в «НОРБИТ» решали эту задачу и с какими сложностями столкнулись.
Читать полностью »

Excel — это чрезвычайно распространённый инструмент для анализа данных. С ним легко научиться работать, есть он практически на каждом компьютере, а тот, кто его освоил, может с его помощью решать довольно сложные задачи. Python часто считают инструментом, возможности которого практически безграничны, но который освоить сложнее, чем Excel. Автор материала, перевод которого мы сегодня публикуем, хочет рассказать о решении с помощью Python трёх задач, которые обычно решают в Excel. Эта статья представляет собой нечто вроде введения в Python для тех, кто хорошо знает Excel.

Python, pandas и решение трёх задач из мира Excel - 1
Читать полностью »

Библиотека pandas — это один из лучших инструментов для разведочного анализа данных. Но это не означает, что pandas — это универсальное средство, подходящее для решения любых задач. В частности, речь идёт об обработке больших объемов данных. Мне довелось провести очень и очень много времени, ожидая, пока pandas прочтёт множество файлов, или обработает их, вычислив на основе находящихся в них сведений какие-то интересующие меня показатели. Дело в том, что pandas не поддерживает механизмы параллельной обработки данных. В результате этому пакету не удаётся на полную мощность воспользоваться возможностями современных многоядерных процессоров. Большие наборы данных в pandas обрабатываются медленно.

Как помочь pandas в обработке больших объёмов данных? - 1

Недавно я задался целью найти что-то такое, что позволит помочь мне в деле обработки больших данных. Мне удалось найти то, что я искал, я встроил найденный инструмент в свой конвейер обработки данных. Я использую его для работы с большими объёмами данных. Например — для чтения файлов, содержащих 10 гигабайт данных, для их фильтрации и агрегирования. Когда я справляюсь с решением подобных задач, я сохраняю то, что у меня получилось, в CSV-файле меньшего размера, который подходит для pandas, после чего приступаю к работе с полученными данными с помощью pandas.

Вот блокнот Jupyter, содержащий примеры к этому материалу, с которыми можно поэкспериментировать.
Читать полностью »

Я начал вести список наиболее часто используемых функций, решая алгоритмические задачи на LeetCode и HackerRank.

Быть хорошим программистом — это не значит помнить все встроенные функции некоего языка. Но это не означает и того, что их запоминание — бесполезное дело. Особенно — если речь идёт о подготовке к собеседованию.

Хочу сегодня поделиться со всеми желающими моей шпаргалкой по работе со строками в Python. Я оформил её в виде списка вопросов, который использую для самопроверки. Хотя эти вопросы и не тянут на полноценные задачи, которые предлагаются на собеседованиях, их освоение поможет вам в решении реальных задач по программированию.

41 вопрос о работе со строками в Python - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js