Рубрика «python» - 133

SciPy, ввод и вывод в MATLAB - 1

SciPy (произносится как сай пай) — это пакет прикладных математических процедур, основанный на расширении Numpy Python. С SciPy интерактивный сеанс Python превращается в такую же полноценную среду обработки данных и прототипирования сложных систем, как MATLAB, IDL, Octave, R-Lab и SciLab. В этом посте я хотел бы рассказать о возможностях пакета ввода/вывода scipy.io, который позволяет работать с файлами данных Octave и MATLAB.

Читать полностью »

Привет!

Меня зовут Алексей, уже 7 лет я ведущий разработчик Smart TV-решений в крупной компании из Ижевска, занимающейся заказной разработкой. Каждый год у нас проводится конкурс новогодних украшений, и каждый раз мы ничего не украшаем, а пилим всякие технологичные штуки. В этот раз скрестили дрон и Smart TV-приложение. А что из этого получилось — читайте ниже.

Идея была вполне реализуема. Хотели сделать квадрокоптер в виде саней Деда Мороза, который бы сам и под музыку развозил по офису подарки для сотрудников. При этом ориентироваться в пространстве он должен был с помощью анализа ArUco-меток, взаимодействуя с приложениями для телевизоров («сдувание» работающими винтами дыма из труб, выбегание зверушек для встречи/провожания квадрокоптера).

И на все три месяца. Конечно же, мы не успели.

Хотя в разное время над проектом работали до семи человек, результат оказался далек от идеала. В общем, мы научились только запускать коптер и написали приложения для телевизоров. Настроили взаимодействие квадрокоптера с телевизорами. Но обо всем по порядку.

Python + Raspberry Pi + Pixhawk и квадрокоптер. Или как не надо делать роботов - 1
Читать полностью »

Фильтр Калмана для минимизации энтропийного значения случайной погрешности с не Гауссовым распределением - 1

Введение

На Habr математическое описание работы фильтра Калмана и особенности его применения рассматривались в следующих публикациях [1÷10]. В публикации [2] в простой и доходчивой форме рассмотрен алгоритм работы фильтра Калмана (ФК) в модели «пространства состояний», Следует отметить, что исследование систем контроля и управления во временной области с помощью переменных состояния широко используется в последнее время благодаря простоте проведения анализа [11].

Публикация [8] представляет значительный интерес именно для обучения. Очень эффективен методический приём автора, который начал свою статью с рассмотрения распределения случайной погрешности Гаусса, рассмотрел алгоритм ФК и закончил простой итерационной формулой для подбора коэффициента усиления ФК. Автор ограничился рассмотрением распределения Гаусса мотивируя это тем, что при достаточно больших $n$ (многократных измерений) закон распределения суммы случайных величин стремится к распределению Гаусса.

Теоретически такое утверждение, безусловно, справедливо, однако на практике число измерений в каждой точке диапазона не может быть очень большим. Сам R. E. Kalman получил результаты о минимуме ковариации фильтра на базе ортогональных проекций, без предположения о гауссовости ошибок измерений [12].

Целью настоящей публикации является исследование возможностей фильтра Калмана для минимизации энтропийного значения случайной погрешности с не Гауссовым распределением.
Для оценки эффективности фильтра Калмана при идентификации закона распределения или суперпозицией законов по экспериментальным данным воспользуемся информационная теорией измерений основанной на теории информации К. Шеннона, согласно которой информация, подобно физической величине, может быть измерена и оценена.
Читать полностью »

image

SciPy (произносится как сай пай) — это пакет прикладных математических процедур, основанный на расширении Numpy Python. Он значительно расширяет возможности Python, предоставляя в распоряжение пользователя команды и классы высокого уровня для управления данными и их визуализацией. С SciPy интерактивный сеанс Python превращается в такую же полноценную среду обработки данных и прототипирования сложных систем, как MATLAB, IDL, Octave, R-Lab и SciLab.

Читать полностью »

Не так давно передо мной встала производственная задача – запустить обученную модель нейронной сети Kesas на нативном C++ коде. Как ни странно, решение оказалось вообще не тривиальным. В результате чего появилась собственная библиотека, дающая такую возможность. О том, как же это – нейросети на чистых крестах и будет сегодняшняя небольшая статья.

Тем, кому не терпится – вот тут репозитарий на github, с подробным описанием использования. Ну а всех остальных прошу под кат… Читать полностью »

Именованный кортеж

Эта статья — об одном из лучших изобретений Python: именованном кортеже (namedtuple). Мы рассмотрим его приятные особенности, от известных до неочевидных. Уровень погружения в тему будет нарастать постепенно, так что, надеюсь, каждый найдёт для себя что-то интересное. Поехали!

Читать полностью »

Представляю вашему вниманию перевод главы из книги Hands-On Data Science with Anaconda
«Предиктивная аналитика данных — моделирование и валидация»

Наша основная цель в проведении различных анализов данных — это поиск шаблонов, чтобы предсказать, что может произойти в будущем. Для фондового рынка исследователи и специалисты проводят различные тесты, чтобы понять рыночные механизмы. В этом случае можно задать много вопросов. Каким будет уровень рыночного индекса в ближайшие пять лет? Каков будет следующий ценовой диапазон IBM? Будет ли волатильность рынка увеличиваться или уменьшаться в будущем? Каким может быть влияние, если правительства изменят свою налоговую политику? Какова потенциальная прибыль и убытки, если одна страна начнет торговую войну с другой? Как мы прогнозируем поведение потребителя, анализируя некоторые связанные переменные? Можем ли мы предсказать вероятность того, что студент-выпускник успешно закончит учебу? Можем ли мы найти связь между определенным поведением одного конкретного заболевания?

Поэтому мы рассмотрим следующие темы:

  • Понимание предиктивного анализа данных
  • Полезные наборы данных
  • Прогнозирование будущих событий
  • Выбор модели
  • Тест Грэнджера на причинность

Читать полностью »

Разбор задачи с собеседования в Google: синонимичные запросы - 1

Это новая статья из разбора задач с собеседований в Google. Когда я там работал, то предлагал кандидатам такие задачи. Потом произошла утечка, и их запретили. Но у медали есть обратная сторона: теперь я могу свободно объяснить решение.
Читать полностью »

Writing yet another Kubernetes templating tool - 1

If you are working with Kubernetes environment then you probably make use of several existing templating tools, some of them being a part of package managers such as Helm or Ksonnet, or just templating languages (Jinja2, Go template etc.). All of them have their own drawbacks as well as advantages and we are going to go through them and write our own tool that will try to combine the best features.

Читать полностью »

image

Машинное обучение активно применяется во многих областях нашей жизни. Алгоритмы помогают распознавать знаки дорожного движения, фильтровать спам, распознавать лица наших друзей на facebook, даже помогают торговать на фондовых биржах. Алгоритм принимает важные решения, поэтому необходимо быть уверенным, что его нельзя обмануть.

В этой статье, которая является первой из цикла, мы познакомим вас с проблемой безопасности алгоритмов машинного обучения. Это не требует от читателя высокого уровня знаний машинного обучения, достаточно иметь общее представление о данной области.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js