Рубрика «python» - 109

image

В этой статье представлена реализация на Python алгоритма распознавания источников освещения на картах окружения (LDR или HDR) при помощи равнопромежуточной проекции (equirectangular projection). Однако после внесения незначительных изменений её также можно использовать с простыми фоновыми изображениями или кубическими картами. Примеры возможного применения алгоритма: программы трассировки лучей, в которых требуется распознавать первичные источники освещения для испускания из них лучей; в растеризованных рендерерах он может применяться для отбрасывания теней, использующих карту окружения; кроме того, алгоритм также можно применять в программах устранения засветов, например в AR.

Алгоритм состоит из следующих этапов:

  1. Снижение разрешения исходного изображения, например, до 1024.
  2. Преобразование изображения в яркость (luminance), при необходимости с размытием изображения.
  3. Применение метода квази-Монте-Карло.
  4. Преобразование из сферических координат в равнопромежуточные.
  5. Фильтрация сэмплов на основании яркости соседа.
  6. Сортировка сэмплов на основании их яркости.
  7. Фильтрация сэмплов на основании евклидовой метрики.
  8. Слияние сэмплов при помощи алгоритма Брезенхэма.
  9. Вычисление позиции кластера освещения на основании его яркости.

Существует множество алгоритмов снижения разрешения изображений. Билинейная фильтрация — самый быстрый или простой в реализации, к тому же он лучше всего подходит в большинстве случаев. Для преобразования яркости и в LDR-, и HDR-изображениях можно использовать стандартную формулу:

  lum = img[:, :, 0] * 0.2126 + img[:, :, 1] * 0.7152 + img[:, :, 2] * 0.0722

Дополнительно можно применить к изображению яркости небольшое размытие, например, в 1-2 пикселя для изображения разрешением 1024, для устранения всех высокочастотных деталей (в частности, вызванных снижением разрешения).
Читать полностью »

Data Science Digest (July 2019) - 1

Приветствую всех!

Лето в полном разгаре, и если вы планируете быть в Одессе 5-го июля, приглашаю вас на ODS митап и дата-бар, который организовывает одесская ODS.ai команда. Напоминаю, что у дайджеста есть свой Telegram-канал и страницы в соцсетях (Facebook, Twitter, LinkedIn, Medium), где я ежедневно публикую ссылки на полезные материалы. Присоединяйтесь!

А пока предлагаю свежую подборку материалов под катом.
Читать полностью »

Иногда возникает необходимость разделить несколько пакетов, лежащих в одном пространстве имен по разным физическим путям. Например, если вы хотите иметь возможность передавать разную компоновку плагинов, имея возможность в последствии добавлять их, не контролируя их расположение, и, при этом, обращаться к ним через один namespace.

Эта шпаргалка, которая подойдет скорее для новичков, посвящена пространствам имен Python.

Давайте рассмотрим, как это можно сделать в разных версиях Python, так как хотя Python2 и перестает скоро поддерживаться, многие из нас как раз сейчас меж двух огней, и это как раз один из важных нюансов при переходе.

image
Читать полностью »

Введение

Одним из первых радиотелескоп построил американец Грот Рёбер в 1937 году. Радиотелескоп представлял собой жестяное зеркало диаметром 9.5 м, установленное на деревянной раме:

Математическая модель радиотелескопа со сверхдлинной базой - 1

К 1944 году Рёбер составил первую карту распределения космических радиоволн в области Млечного пути.

Развитие радиоастрономии повлекло за собой ряд открытий: в 1946 г. было открыто радиоизлучение из созвездия Лебедь, в 1951 г. – внегалактическое излучение, в 1963 г. – квазары, в 1965 г. открыто реликтовое фоновое излучения на волне 7.5 см.

В 1963 был построен уникальный 300-метровый радиотелескоп в Аресибо (Пуэрто-Рико). Это неподвижная чаша, имеющая перемещающийся облучатель, построена в естественной расщелине местности.

Математическая модель радиотелескопа со сверхдлинной базой - 2
Читать полностью »

Мы рады сообщить, что расширение Python для Visual Studio Code от июня 2019 года уже доступно. Вы можете загрузить расширение Python из Marketplace или установить его прямо из галереи расширений в Visual Studio Code. Если у вас уже установлено расширение Python, вы также можете получить последнее обновление, просто перезапустив Visual Studio Code. Узнать больше о поддержке Python в Visual Studio Code можно в документации.

В этом выпуске мы внесли улучшения, которые перечислены в нашем журнале изменений, решив в общей сложности 70 проблем, включая связанные со средством просмотра графиков с окном Python Interactive и параллельными тестами с pytest. Обо всех изменениях читайте под катом.

Python в Visual Studio Code — июньский релиз - 1Читать полностью »

Привет.

Создать такую нейронную сеть — просто.

Минута первая: введение

Этот высокоуровневый урок рассчитан на новичков в машинном обучении и искусственном интеллекте. Для того, чтобы успешно создать нейронную сеть, необходимо:

  • Установленный Python;
  • Как минимум начальный уровень программирования;
  • Пять минут свободного времени.

Мы пропустим много деталей работы нейронной сети, не будем углубляться в теоретическую часть, а сфокусируемся на предсказании рака за 5 минут.

image

Для построения предсказаний будем использовать имплементацию нейронной сети из библиотеки scikit-learn. Сами же предсказания будут основаны на данных из датасета Калифорнийского университета в Ирвайн “Breast Cancer Wisconsin” (рак груди, Висконсин). На вход нейронной сети подаются свойства клеточных ядер новообразования (например, строение), а на выходе мы получаем предсказание: злокачественное или доброкачественное новообразование.Читать полностью »

Привет! Представляю вашему вниманию перевод статьи Toward a “Kernel Python” автора Glyph Lefkowitz (создателя фреймворка Twisted).

Подробнее — под катом.
Читать полностью »

Всем привет. Сегодня хотим поделиться еще одним переводом подготовленным в преддверии запуска курса «Разработчик Python». Поехали!

Что я узнал про оптимизацию в Python - 1

Я использовал Python чаще, чем любой другой язык программирования в последние 4-5 лет. Python – преобладающий язык для билдов под Firefox, тестирования и инструмента CI. Mercurial также в основном написан на Python. Множество своих сторонних проектов я тоже писал на нем.

Во время своей работы я получил немного знаний о производительности Python и о его средствах оптимизации. В этой статье мне хотелось бы поделиться этими знаниями.

Мой опыт с Python в основном связан с интерпретатором CPython, в особенности CPython 2.7. Не все мои наблюдения универсальны для всех дистрибутивов Python или же для тех, которые имеют одинаковые характеристики в сходных версиях Python. Я постараюсь упоминать об этом во время повествования. Помните о том, что эта статья не является детальным обзором производительности Python. Я буду говорить только о том, с чем сталкивался самостоятельно. Читать полностью »

На Хабре уже были статьи о подробностях реализации менеджера памяти CPython, Pandas, я написал статью про реализацию словаря.

Казалось бы, что можно написать про обычный целочисленный тип? Однако тут не всё так просто и целочисленный тип не такой уж и очевидный.

Если вам интересно, почему x * 2 быстрее x << 1.

И как провернуть следующий трюк:

>>> 42 == 4
True
>>> 42
4
>>> 1 + 41
4

То вам стоит ознакомиться с данной статьёй.
Читать полностью »

Как все начиналось...

Как всегда, зависая вконтакте, я решил скачать пару новых аудиозаписей на комп. Но меня ждало разочарование: аудиозаписи возвращались в каком-то странном формате: m3u8. Этот формат даже vlc media pleyer не воспроизводил, и я стал думать, что делать…
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js