Рубрика «python» - 106

Относительно недавно, в этом, 2019 году, NVIDIA анонсировала одноплатный компьютер совместимого с Raspberry Pi форм-фактора, ориентированный на AI и ресурсоемкие расчеты.

NVIDIA Jetson Nano: тесты и первые впечатления - 1

После его появления в продаже, стало интересно посмотреть, как это работает и что на нем можно делать. Стандартные бенчмарки использовать не так интересно, так что придумаем свои, для всех тестов в тексте приведены исходники. Для тех, кому интересно что получилось, продолжение под катом.
Читать полностью »

Развивая тему конспектов по магистерской специальности "Communication and Signal Processing" (TU Ilmenau), продолжить хотелось бы одной из основных тем курса "Adaptive and Array Signal Processing". А именно основами адаптивной фильтрации.

Для кого в первую очередь была написана эта статья:

1) для студенческой братии родной специальности;
2) для преподавателей, которые готовят практические семинары, но ещё не определились с инструментарием — ниже будут примеры на python и Matlab/Octave;
3) для всех, кто интересуется темой фильтрации.

Что можно найти под катом:

1) сведения из теории, которые я постарался оформить максимально сжато, но, как мне кажется, информативно;
2) примеры применения фильтров: в частности, в рамках эквалайзера для антенной решетки;
3) ссылки на базисную литературу и открытые библиотеки (на python), которые могут быть полезны для исследований.

В общем, добро пожаловать и давайте разбирать всё по пунктам.

Оптимальная линейная фильтрация: от метода градиентного спуска до адаптивных фильтров - 1

Читать полностью »

Хотите узнать о трех методах получения данных для своего следующего проекта по ML? Тогда читайте перевод статьи Rebecca Vickery, опубликованной в блоге Towards Data Science на сайте Medium! Она будет интересна начинающим специалистам.

Извлечение данных при машинном обучении - 1

Получение качественных данных — это первый и наиболее важный шаг в любом проекте по машинному обучению. Специалисты Data Science часто применяют различные методы получения датасетов. Они могут использовать общедоступные данные, а также данные, доступные по API или получаемые из различных баз данных, но чаще всего комбинируют перечисленные методы.

Цель этой статьи — представить краткий обзор трех разных методов извлечения данных с использованием языка Python. Я расскажу, как делать это с помощью Jupyter Notebook. В своей предыдущей статье я писала о применении некоторых команд, запускаемых в терминале.Читать полностью »

Вместо тысячи слов...

Безумный конвертер GIF'ок в анимированные стикеры для Telegram - 1

xZibit тоже рад, ведь здесь GIF вставлены в стикеры, чтобы быть вставлеными в GIF для КДПВ!

А теперь о подробностях реализации.
Читать полностью »

Kubernetes Operator на Python без фреймворков и SDK - 1

Go на данный момент является монополистом среди языков программирования, которые люди выбирают для написания операторов для Kubernetes. Тому есть такие объективные причины, как:

  1. Существует мощнейший фреймворк для разработки операторов на Go — Operator SDK.
  2. На Go написаны такие «перевернувшие игру» приложения, как Docker и Kubernetes. Писать свой оператор на Go — говорить с экосистемой на одном языке.
  3. Высокая производительность приложений на Go и простые инструменты для работы с concurrency «из коробки».

NB: Кстати, как написать свой оператор на Go, мы уже описывали в одном из наших переводов зарубежных авторов.

Но что, если изучать Go вам мешает отсутствие времени или, банально, мотивации? В статье приведен пример того, как можно написать добротный оператор, используя один из самых популярных языков, который знает практически каждый DevOps-инженер, — Python.Читать полностью »

Всем привет!

Часто ко мне обращаются люди с вопросами по задачам из области цифровой обработки сигналов (ЦОС). Я подробно рассказываю нюансы, подсказываю нужные источники информации. Но всем слушателям, как показало время, не хватает практических задач и примеров в процессе познания этой области. В связи с этим я решил написать краткий интерактивный курс по цифровой обработке сигналов и выложить его в открытый доступ.

Большая часть обучающего материала для наглядного и интерактивного представления реализована с использованием Jupyter Notebook. Предполагается, что читатель имеет базовые знания из области высшей математики, а также немного владеет языком программирования Python.

Курс лекций «Основы цифровой обработки сигналов» - 1
Читать полностью »

Здравствуйте! Меня зовут Максим Газизов. Ранее я публиковал пост на Хабре о своих успехах и ошибках в геймдеве. И затем, спустя год работы над своим детищем под названием Wasteland Wars, я пропал из эфира. Всё потому, что меня настолько затянул процесс, как никогда раньше. Кстати, так вышло, что я потерял свой прежний аккаунт и вот создал новый.

Wasteland Wars
Читать полностью »

Привет, читатель.

Представляю пост который идёт строго (!) в закладки и передаётся коллегам. Он с подборкой примечательных файлов формата Jupyter Notebook по Machine Learning, Data Science и другим сферам, связанным с анализом данных. Эти блокноты Jupyter, будут наиболее полезны специалистам по анализу данных — как обучающимся новичкам, так и практикующим профи.

image

Итак, приступим.

Вводные курсы в Jupyter Notebook

Читать полностью »

image

На русском языке довольно мало информации про то, как работать с ELF-файлами (Executable and Linkable Format — основной формат исполняемых файлов Linux и многих Unix-систем). Не претендуем на полное покрытие всех возможных сценариев работы с эльфами, но надеемся, что информация будет полезна в виде справочника и сборника рецептов для программистов и реверс-инженеров.

Подразумевается, что читатель на базовом уровне знаком с форматом ELF (в противном случае рекомендуем цикл статей Executable and Linkable Format 101).

Под катом будут перечислены инструменты для работы, описаны приемы для чтения метаинформации, модификации, проверки и размножения создания эльфов, а также приведены ссылки на полезные материалы.

Читать полностью »

До После
import math
import os.path

import requests

# 100500 other imports

print(math.pi)
print(os.path.join('my', 'path'))
print(requests.get)
import smart_imports

smart_imports.all()

print(math.pi)
print(os_path.join('my', 'path'))
print(requests.get)

Так получилось, что аж с 2012 года я разрабатываю open source браузерку, являясь единственным программистом. На Python само собой. Браузерка — штука не самая простая, сейчас в основной части проекта больше 1000 модулей и более 120 000 строк кода на Python. В сумме же с проектами-спутниками будет раза в полтора больше.

В какой-то момент мне надоело возиться с этажами импортов в начале каждого файла и я решил разобраться с этой проблемой раз и навсегда. Так родилась библиотека smart_imports (github, pypi).

Идея достаточно проста. Любой сложный проект со временем формирует собственное соглашение об именовании всего. Если это соглашение превратить в более формальные правила, то любую сущность можно будет импортировать автоматически по имени ассоциированной с ней переменной.

Например, не надо будет писать import math чтобы обратиться к math.pi — мы и так можем понять, что в данном случае math — модуль стандартной библиотеки.

Smart imports поддерживают Python >= 3.5 Библиотека полностью покрыта тестами, coverage > 95%. Сам пользуюсь уже год.

За подробностями приглашаю под кат.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js