Рубрика «python» - 105

image

Я пишу на питоне лет пять, из них последние три года — развиваю собственный проект. Большую часть этого пути мне помогает в этом моя команда. И с каждым релизом, с каждой новой фичей у нас все больше усилий уходит на то, чтобы проект не превращался в месиво из неподдерживаемого кода; мы боремся с циклическими импортами, взаимными зависимостями, выделяем переиспользуемые модули, перестраиваем структуру.

К сожалению, в Python-сообществе нет универсального понятия «хорошей архитектуры», есть только понятие «питоничности», поэтому архитектуру приходится придумывать самим. Под катом — лонгрид с размышлениями об архитектуре и в первую очередь — об управлении зависимостями применимо к Python.
Читать полностью »

Andrew Godwin опубликовал DEP 0009: Async-capable Django 9 мая, а 21 июля он был принят техническим советом Django, так что можно надеяться, что к выходу Django 3.0 успеют сделать что-нибудь интересное. Он уже упоминался где-то в комментариях Хабра, но я решил донести эту новость до более широкой аудитории путём его перевода — в первую очередь для тех, кто, как и я, не особо следит за новостями Django. В переводе почти наверняка есть косяки, так что принимаются тапки в Ctrl+Enter.

Асинхронный Python разрабатывался много лет, и в экосистеме Django мы экспериментировали с ним в Channels с ориентацией в первую очередь на поддержку вебсокетов.

По мере развития экосистемы стало очевидно, что, хотя нет насущной необходимости расширять Django для поддержки отличных от HTTP протоколов, таких как вебсокеты, поддержка асинхронности даст много преимуществ для традиционной model-view-template структуры Django.

Преимущества описаны в разделе «Мотивация» ниже, но общий вывод, к которому я пришёл, заключается в том, что мы получим так много от асинхронного Django, что это стоит того большого труда, который потребуется. Я также считаю, что очень важно делать изменения итеративным, поддерживаемым сообществом путём, который не будет зависеть от одного-двух старых контрибьюторов, которые могут выгореть.Читать полностью »

Привет читатель.

Для тебя уже не является новостью тот факт, что все на себе попробовали маски старения через приложение Face App. В свою очередь для компьютерного зрения есть задачи и поинтереснее этой. Ниже представлю 8 шагов, которые помогут освоить принципы компьютерного зрения.

image

Прежде, чем начать с этапов давайте поймём, какие задачи мы с вами сможем решать с помощью компьютерного зрения. Примеры задач могут быть следующими:

Читать полностью »

Беглый опрос коллег на моем текущем проекте показал, что при словах "ORM и работа с БД" в подавляющем большинстве случаев звучат слова "Алхимия" и "Django ORM". Знания этих двух слов, в общем, достаточно, чтобы писать чистый, аккуратный и рабочий код. Но расширение инженерного кругозора пока еще никому не вредило, поэтому сегодня мы добавим в нашу картину мира несколько (возможно, до этого дня незнакомых) классных штук для работы с БД.

Мелкая питонячая радость #8: мелкие удовольствия для работы с БД - 1

Читать полностью »

5 главных алгоритмов сэмплинга - 1

Работа с данными — работа с алгоритмами обработки данных.

И мне приходилось работать с самыми разнообразными на ежедневной основе, так что я решил составить список наиболее востребованных в серии публикаций.

Эта статья посвящена наиболее распространённым способам сэмплинга при работе с данными.

Читать полностью »

Привет.

В первой части была рассмотрена NVIDIA Jetson Nano — плата в форм-факторе Raspberry Pi, ориентированная на производительные вычисления с помощью GPU. Настала пора протестировать плату в том, для чего она создавалась — для AI-ориентированных расчетов.

NVIDIA Jetson Nano: тесты и первые впечатления — часть 2, тесты AI - 1

Рассмотрим, как идут на плате разные задачи, вроде классификации изображений или распознавания пешеходов или котиков (куда же без них). Для всех тестов приведены исходники, которые можно запустить на десктопе, Jetson Nano или Raspberry Pi. Для тех, кому интересно, продолжение под катом.
Читать полностью »

Во втором туре выборов губернатора Приморского края 16 сентября 2018 года встречались действующий и.о. губернатора Андрей Тарасенко и занявший второе место в первом туре коммунист Андрей Ищенко. В ходе подсчета голосов на сайте ЦИК РФ отображалась информационная панель с растущим числом обработанных протоколов и голосов за кандидатов.

Публикация подробных данных по участкам на официальном сайте ЦИК www.izbirkom.ru замерла после ввода 1484 (95.74%) протоколов и не возобновлялась до самого конца. Поэтому когда в трансляции лидер голосования вдруг поменялся с Ищенко на Тарасенко, было неясно, как именно это могло произойти. В СМИ просто писали «после обработки 99,03% протоколов лидер сменился».

Однако, располагая промежуточными суммарными данными из информационной панели, с помощью простой математики и программирования можно подробно установить, что именно происходило с протоколами в ночь после выборов. Используем Python, Colab от Google и Z3 theorem prover от Microsoft Research. Ну и добьём всё обычной дедукцией.

Математическое расследование, как подделывали выборы губернатора в Приморье 16 сентября 2018 года - 1
Читать полностью »

Всем привет!
Перевод статьи подготовлен для студентов курса «Web-разработчик на Python». Интересно развиваться в данном направлении? Запишитесь на День Открытых Дверей курса и пообщайтесь вживую с преподавателем: онлайн-трансляция 23 июля в 20:00 по мск.!

О декораторах в Python - 1

Когда вы упражнялись в программировании на языке Python, вы, должно быть сталкивались с таким понятием, как декораторы. Они являются одним из самых элегантных и часто используемых инструментов в современных библиотеках и фреймворках. Декораторы — хороший способ инкапсулировать множество деталей реализации, оставляя на поверхности простой интерфейс.

Читать полностью »

Отчет с PyDaCon meetup в Mail.ru Group, 22 июня - 1

В конце июня, в московском офисе прошел митап на котором собрали 2 секции: доклады по Python, состав которого был сформирован на основе общего списка докладов к PyCon Russia и PyData-трек от PyData Moscow meetup. Под катом собрали презентации, записи докладов и небольшие комментарии.
Читать полностью »

Привет, читатель.

По стопам моего первого поста подборки датасетов для машинного обучения — сделаю подборку относительно свежих датасетов с рабочими примерами по обработке данных. Ведь ни для кого не секрет, что обучение на хороших примерах проходит эффективнее и быстрее. Посмотрим, что интересного нам смогут показать одни из лучших примеров по обработке данных.

Схема работы с текущим постом унаследуется от моего поста про лучшие блокноты по ML и DS, а именно — сохранил в закладки → передал коллеге.

+ бонус в конце статьи — крутой курс от ФПМИ МФТИ.

image

Итак, давайте приступим.

Подборка датасетов с рабочими примерами обработки данных:

Suicide Rates Overview 1985 to 2016 — сравнение социально-экономической информации с показателями самоубийств по годам и странам.

Примеры обработки:

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js