Рубрика «pybrain»

Изучая Python3, я портировал (как смог) библиотечку PyBrain. Об этом я уже писал здесь.
image
Теперь же я хочу немного «поиграть» с данной библиотечкой. Как я уже говорил в предыдущем посте, питон я только начал изучать, так что все написанное в этой статье не стоит воспринимать как Истину. Изучение — это путь, и он извилист.

Задачу поставим перед искусственной нейронной сетью (ИНС) весьма простую — классификацию, а именно: распознавание букв латинского алфавита.

Вроде бы классический пример, про него уже писали на хабре неоднократно: «Что такое искусственные нейронные сети?», «Нейронные сети и распознавание символов» и т.д.
Но моей целью стоит изучение питона на не самых простых примерах. Т.е. учимся сразу на сложном и незнакомом. Так мы найдем в два раза больше граблей, что позволит нам копнуть в глубины языка, разбираясь с «почему не работает?».

Под хабракатом вас ждёт: описание способа подготовки данных на PyQt4, использование модуля argparse, ну и конечно же PyBrain!
Читать полностью »

Доброго времени суток, %username%!

Хочу поведать историю о скрещивании python3 с библиотечкой PyBrain, описанной недавно на хабре.
Подробности под катом.
Читать полностью »

PyBrain работаем с нейронными сетями на Python
В рамках одного проекта столкнулся необходимостью работать с нейронными сетями, рассмотрел несколько вариантов, больше всего понравилась PyBrain. Надеюсь её описание будет многим интересно почитать.
PyBrain — одна из лучших Python библиотек для изучения и реализации большого количества разнообразных алгоритмов связанных с нейронными сетями. Являет собой хороший пример удачного совмещения компактного синтаксиса Python с хорошей реализацией большого набора различных алгоритмов из области машинного интеллекта.
Предназначен для:

  • Исследователей — предоставляет единообразную среду для реализации различных алгоритмов, избавляя от потребности в использовании десятков различных библиотек. Позволяет сосредоточится на самом алгоритме а не особенностях его реализации.
  • Студентов — с использованием PyBrain удобно реализовать домашнее задание, курсовой проект или вычисления в дипломной работе. Гибкость архитектуры позволяет удобно реализовывать разнообразные сложные методы, структуры и топологии.
  • Лекторов — обучение методам Machine Learning было одной из основных целей при создании библиотеки. Авторы будут рады, если результаты их труда помогут в подготовке грамотных студентов и специалистов.
  • Разработчиков — проект Open Source, поэтому новым разработчикам всегда рады.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js