Рубрика «простые числа» - 5

Непростые простые числа

Непростые простые числа: секреты тайного общества ткачей - 1

Автор статьи предлагает заглянуть в то, что представляют собой множества простых чисел, если взглянуть на них геометрическим образом. Это не профессиональная работа, а простое, любительское исследование некоторых любопытных закономерностей. Поэтому, в статье не будет сложной математики, и мы не будем забираться глубоко в ее дебри.

Вероятно, читателю известны многие проблемы, связанные с простыми числами. Их расположение в множестве натуральных чисел неочевидно. Большие простые числа трудно находить, нужно много усилий, чтобы проверить большое число на простоту. На этой трудности основаны многие современные методы криптографии. Мы можем легко перемножить да многозначных простых числа, но зная результат найти исходные множители – очень сложная задача.

Есть множество способов оптимизации, которые намного быстрее простого перебора, однако даже если оптимизация ускорит поиск в 10 раз, достаточно увеличить число на 2-3 десятичных знака (например, в 100 раз), чтобы замедлить поиск в 10^100 раз.

Это и значит, что сложность алгоритма является экспоненциальной, и поэтому какой бы быстрый ни был суперкомпьютер, мы можем подобрать длину числа еще больше, чтобы таких суперкомпьютеров потребовалось миллиард. Правда, стоит уточнить еще раз: находить простые числа для перемножения при этом становится так же все труднее и труднее.

К слову, математики не нашли ни доказательства, ни опровержения того, что нельзя найти алгоритм факторизации, сложность которого не была бы экспоненциально зависящей от длины числа. А доказав или опровергнув это, можно, заодно, решить математическую проблему, известную как гипотеза Римана. За ее доказательство математический институт Клея обещает миллион долларов.

Читать полностью »

Давеча снова увлекся простыми числами. Манит меня их тайна.

Написал алгоритм, похожий на решето Эратосфена. За 3 часа программа нашла 700 тысяч первых простых чисел. А мне надо хотя бы 14 миллионов простых чисел, чтобы перемножив их, получить число с количеством десятичных цифр, равным 100 миллионам штук.

Из статьи «Еще раз о поиске простых чисел», написанной пользователем Bodigrim, узнал о существовании быстрой программы primegen, которая работает используя решето Аткина. Установил ее в виртуальной машине LUbuntu (VirtualBox). Действительно, primegen очень быстро работает!

Тогда встал вопрос, как сохранить 14 миллионов простых чисел? Можно просто каждое простое число записать в файл как int32. А если простое число будет больше мощности 32-х бит?
Читать полностью »

     Каждое натуральное число обладает очень многими известными и, по-видимому, еще в большем числе неизвестными свойствами. Четные — нечетные, простые — составные, рациональные — иррациональные, целые — дробные, конечные — бесконечные и др. свойства способствуют введению классификации чисел, некоторого порядка в их множестве. Традиционный подход предполагает, что не располагая самим числом (его значением) невозможно определить и его свойства. Но это не совсем так. Ряд полезных свойств для некоторых чисел можно определять не зная их значений, но имея данные об их положении в натуральном ряде чисел (НРЧ). Простыми числами, кроме 2, могут быть только нечетные, а их положение НРЧ определяется нечетной позицией. Сами эти позиции не все равнозначны. Про некоторые большие нечетные N(x1, x2) числа (разумеется в нечетных позициях НРЧ) можно, не пользуясь традиционными (вероятностными) и детерминированным (весьма трудоемким) алгоритмами, однозначно утверждать, они не могут быть простыми.Читать полностью »

В мае на Хабре была опубликована статья, которая повествует о работе Yitang Zhang в области теории простых чисел, вызвавшей большой резонанс в научном сообществе. В этой заметке даётся краткая сводка результатов, которых удалось достичь научному сообществу спустя девять месяцев с момента публикации этой работы.

Читать полностью »

Для начала небольшой спойлер
Пять удивительных математических фактов
Да я знаю, что если написать фамилию с заглавной буквы, казуса не получится. Дальше перевод.

Математика – одна из немногих областей знаний, которая может быть объективно названа истинной, потому что ее теоремы основаны на чистой логике. Но в то же время эти теоремы часто оказываются очень странными и противоречащими интуиции.

Некоторые люди считают математику скучной. Следующие примеры показывают, что она какая угодно, но не такая
Читать полностью »

Сегодня же пятница, да?

Прочитал совсем недавно довольно известную книгу «Человек, который принял жену за шляпу». Книга действительно стоит быть прочитанной, но я сейчас не об этом.

В одном из сюжетов автор — практикующий врач, работающий с людьми с разной степенью повреждения мозга, сталкивается с близнецами-аутистами, играющими друг с другом в игру. Сначала один из них называет шестизначное число, через какое-то время другой явно этому чилу радуется, словно что-то в нем разглядев, и в свою очередь, называет другое шестизначное число. Процесс повторяется много раз.
Читать полностью »

image

Всем хорошего дня!

На Хабре уже не раз упоминали об этих чудо-числах.

Конечно перечислять все я не буду, достаточно просто заглянуть сюда.Уже довольно большой период времени я наблюдаю за развитием темы простых чисел. И мне все больше хочется называть эти числа не простыми, а гениальными. И это не просто мое желание. Достаточно вспомнить высказывания великих людей: «Простота — это то, что труднее всего на свете; это крайний предел опытности и последнее усилие гения.» Леонардо да Винчи; «Всё гениальное просто, и всё простое гениально.» Йозеф Геббельс.Хочется отметить, что простые числа занимают далеко не последнее место в криптографии.Существует множество алгоритмов нахождения простых чисел. Но описать их последовательность аналитически, найти закономерность, еще никому не удавалось. Давайте же посмотрим на числа и поищем среди них простые. Читать полностью »

Идея этого алгоритма пришла мне в голову ещё в 2006 на лекции по криптографии, как раз посвящённой алгоритму RSA. На ней говорилось, что большое число x из диапазона 22000÷24000 считается простым если удовлетворяет неким критерии простоты и если остальные числа в его окрестностях (x-2000;x) являются составными. Тогда меня удивило, зачем проверять все ближайшие числа на простоту, если можно специально выбирать числа, рядом с которыми в заданном диапазоне все соседи являются составными по-умолчанию? Алгоритм был придуман, описан и опубликован в университетском сборнике, но т.к. их никто не читает, то опубликую его здесь. Авось, кому-то пригодится;)
Читать полностью »

Неизвестный математик совершил прорыв в теории простых чисел близнецовВ математике чрезвычайно редко случается, чтобы учёный старше 40 лет опубликовал первую серьёзную научную работу. Ещё реже бывает, чтобы эта работа имела большую научную ценность. Именно такой редчайший случай представляет из себя доцент университета Нью-Гэмпшира Итан Чжан (Yitang Zhang), который до сих пор даже не имеет ни звания профессора, ни веб-странички со списком научных работ. Тем не менее, ему удалось совершить серьёзный шаг к решению одной из старейших математических проблем — теореме о простых числах-близнецах.

Когда журнал “Annals of Mathematics” получил 17 апреля 2013 года научную работу Чжана, они восприняли её скептически. Заявка на прорывное исследование от неизвестного учёного? Это слишком банально и часто встречается, чтобы оказаться правдой. На удивление редколлегии, несколько научных экспертов подробно изучили работу Чжана — и нашли доказательство гипотезы о расстоянии между парными простыми числами предельно ясным, чётким и бесспорным.

В результате, журнал одобрил работу для публикации в исключительно короткие сроки — уже через три недели после поступления.
Читать полностью »

Математики из распределённого проекта по поиску простых чисел GIMPS объявили об обнаружении нового простого числа Мерсенна. Это важное событие для математического сообщества, потому что до сих пор было известно только 47 таких чисел, последнее было найдено в 2009 году.

48-е простое число Мерсенна — 257.885.161-1, с 17.425.170 десятичными разрядами. См. полную запись числа в текстовом формате (22,45 мегабайта).

Числа Мерсенна имеют вид 2n-1, где n — натуральное число. Простые числа Мерсенна являются самыми большими простыми числами, известными науке. Предыдущий мировой рекорд принадлежал числу 243.112.609-1, имеющему 12.978.189 десятичных разрядов.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js