Рубрика «Производство и разработка электроники» - 96

Предисловие

В поисках ответов на вопросы, возникающие при проектировании печатных плат, мною был изучен значительный объём литературы – как больших монографий, так и отдельных технических статей. За исключением, наверное, нескольких статей, это была англоязычная литература. Я подумал, а почему бы не оформить накопившийся опыт в виде практического руководства, которое может оказаться полезным как начинающим, так и, надеюсь, более опытным отечественным разработчикам. Начиная, я думал о распространении ценной информации, а краем мысли и о вкладе в отрасль в целом. Настоящая публикация открывает целую серию статей, в которых с практической точки зрения будут рассмотрены основные задачи, возникающие при разработке печатных плат, и в систематизированном виде изложены ключевые рекомендации с обязательным указанием их физических основ и условий применимости.Читать полностью »

Во всём мире несколько десятков миллионов наименований электронных компонентов. Для эффективной работы с таким количеством информации невозможно обойтись без специальных инструментов поиска. Поэтому, для того чтобы упростить связь между покупателем, продавцом и производителем, существуют так называемые «Поисковики электронных компонентов». В данный момент можно насчитать около двадцати подобных платформ как российских, так и иностранных.

В силу рода своей деятельности часто использую данные платформы для поиска и заказа компонентов. Сначала через параметрический поиск на digikey ищем нужный компонент, после через chipfind находим российского поставщика. Узнали себя? Если да, то эта статья для Вас.
Любители в основном пользуются платформами, которые хорошо разрекламированы, просто не зная о существовании возможности выбора. Специалисты же пользуются не одной, а целым набором. В этой статье постараюсь ответить на вопрос: почему не существует универсальной платформы для поиска электронных компонентов?
Читать полностью »

Существует достаточно большое количество вариантов видеть ночью. Это или взять прибор ночного видения, или тепловизор, или ночной прицел с подсветкой, или, может быть, камеру с электронным умножением на EMCCD. К сожалению, не всегда все камеры и приборы оказываются под рукой одновременно, и их обычно не удаётся сравнить между собой.

К счастью, нам повезло, и у нас появилась такая возможность. Более того, повезло, что погода позволила воссоздать эталонные условия для проведения сравнительных испытаний. Луна отсутствовала, небо было чистое, и нужно было только выехать за город, подальше от искусственного освещения.

Итак, что же у нас было с собой:

1.1 ЭОП – электронно-оптический преобразователь третьего поколения. Лучший из всех приборов типа ЭОП, с которыми приходилось сталкиваться. Очень сложно создать условия, при которых он ничего не видит. Разрешение ЭОП 68лин/мм. Максимум спектральной чувствительности должен быть в районе 800нм. ЭОП состыкован с камерой VC249 на базе малошумящего сенсора. Разрешение камеры значительно выше разрешение ЭОП, поэтому камера не влияет на результат.

1.2 VS320 – камера ближнего ИК-диапазона (SWIR) с чувствительностью в диапазоне спектра от 0.9 до 1.8 мкм. Спектральная чувствительность практически плоская. Разрешение 320х256, размер фоточувствительного элемента 25х25мкм.

1.3 VC400 – «обычная» камера видимого диапазона на базе кремневой структуры. «Обычная» в кавычках, потому что это камера для проведения астронометрических наблюдений с обратной засветкой. Разрешение 2000х2000, размер фоточувствительного элемента более 10мкм. Максимум спектральной характеристики в районе 550нм.

Все камеры разработаны и произведены в России, но это не должно никого смущать, так как элементная база (за исключением ЭОП) вполне себе импортная.
Читать полностью »

image

Согласно данным Всемирной Организации Здравоохранения, каждый год во всем мире от 250000 до 500000 человек теряет возможность двигаться в результате травм спинного мозга, в последствие чего становятся инвалидами. В результате последних экспериментов, ученым удалось достигнуть колоссальных результатов, которые дают надежду людям покинуть инвалидное кресло и вернуться к полноценной жизни.

Первые попытки ученых были более 20 лет назад. Этой темой начал заниматься профессор Грегуар Куртин с фондом Кристофера Рива. Он создал команду из нейробиологов, хирургов, физиотерапевтов и инженеров, которые пытались решить проблему. Результаты экспериментов успешно провели на мышах и обезьянах. Но в связи со смертью Кристофера Рива, исследования затянулись. И лишь совсем недавно швейцарцы отпраздновали успех.

Опыт проводился на двух макаках, у которых был частично перерзан спинной мозг. Одна обезьяна с парализовано правой ногой научилась ходить за 6 дней, другая за две недели.
Читать полностью »

Изобретатель КМОП создал дешёвый фотонный сенсор, работающий при комнатной температуре на 1040 FPS - 1

Иллюстрация процесса формирования изображения прототипом микросхемы QIS разрешением 1 Mjot на частоте 1040 кадров/с. В левом верхнем углу — увеличенная область из общего поля бинарных однофотонных данных (1024×1024), полученных с сенсора на 1040 FPS. В правом нижнем углу — изображение с градациями серого, которое получено путём обработки исходных данных с сенсора алгоритмом устранения шумов

Высокопроизводительные фотонные детекторы сейчас повсеместно используются в науке, камерах ночного видения, а также в автомобильных сенсорах и камерах безопасности. Производительность детекторов определяется несколькими ключевыми факторами:

  • подсчёт частоты ошибок;
  • скорость чтения;
  • пространственное разрешение;
  • квантовая эффективность;
  • темновой ток.

В данный момент на рынке представлены однофотонные лавинные диоды (SPAD) и устройства с зарядовой связью с электронным умножением (EMCCD). Оба типа детекторов полагаются на лавинное умножение для генерации сигнала большого напряжения от единственного фотона. Подобным устройствам требуется высокое рабочее напряжение для создания критического электрического поля, в котором возможен лавинный эффект.

Специалисты из Инженерной школы Тейерта Дартмута создали принципиально новый фотонный детектор под названием Quanta Image Sensor (QIS), который может произвести настоящую революцию во всех областях, где используются устройства такого типа.
Читать полностью »

Как «пекутся» наши оптические делители - 1

Мы тут уже как-то делились с вами репортажами с китайского производства. Вот вам еще один. В нем порассуждаем над циничным процессом разделения света. Причем вновь посредством вполне китайских технологий. Однако меньше слов, больше фото по теме производства оптоволоконных делителей!
Читать полностью »

image
Иллюстрация: Hallie Bateman

Сегодня исполнилось 70 лет со дня эпохального — тот случай, когда это не преувеличение — события. 16 декабря 1947 года в одной из множества лабораторий корпорации Bell Labs был изобретён транзистор. Без которого сегодня не было бы электроники в современном понимании, потому что вся она сегодня основана на транзисторах. Благодаря им вы носите в карманах смартфоны с огромной вычислительной мощностью (сравните их с бортовыми компьютерами космических аппаратов 30-40 летней давности), а не таскаете телефон в виде ранца в несколько килограммов весом.

Читать полностью »

Учёные и инженеры могут с выгодой использовать давно заброшенный подход к вычислениям

Современный вариант развития старых аналоговых компьютеров - 1
Этот аналоговый механический компьютер использовался для прогноза приливов. Он был известен, как «старый латунный мозг», или, более официально, «Машина предсказания приливов №2». Она служила Прибрежной и геологической службе США для подсчёта таблиц приливов начиная с 1912 года, и не уходила на пенсию вплоть до 1965, когда её заменили электронным компьютером.

Когда Нил Армстронг и Базз Олдрин опустились на Луну в 1969 году в рамках миссии Аполло-11, это, вероятно, было величайшим достижением в инженерной истории человечества [не считая, конечно, запуска первого спутника и первого человека в космос, первого выхода человека в открытый космос, а также создания автоматического космического корабля многоразового использования / прим. перев.]. Многие люди не отдают себе отчёта в том, что важным ингредиентом в успехе миссий Аполло и их предшественников были аналоговые и гибридные (аналогово-цифровые) компьютеры, которые НАСА использовала для симуляций, а в некоторых случаях, даже для управления полётами. Многие из живущих сегодня людей даже не слышали об аналоговых компьютерах, считая, что компьютеры, по определению, являются цифровыми устройствами.
Читать полностью »

Большую часть жизни я работаю в области промышленной автоматизации, и хорошо знаю всех основных производителей в этой области. Кроме того, я специализируюсь на оборудовании Siemens, что тоже важно. Вчера я увидел на ютубе интересный ролик, который я сначала принял за откровенный фейк.

Но поскольку ролик сделан очень качественно, то я решил разобраться – что же там на самом деле. Компания заверяет что она создала и запустила в производство две линейки промышленных контроллеров, не уступающих аналогам от ведущих производителей. И это произошло тихо и незаметно, что странно в свете с текущим курсом правительства на импортозамещение.
Читать полностью »

Я с детства обожал смотреть на печатные платы. Они прекрасны! Легко мог разобрать отцовский магнитофон, чтобы просто посмотреть на его мозг. Собрать потом, правда, не мог. Мог очень долго изучать материнскую плату — это же целый город, со своими заводами, домами и автомагистралями. Но по-настоящему сильный восторг от печатной платы я испытал, когда навернулся голосовой чип у моего старичка Juno-106. Этому синтезатору больше 30 лет. Его голосовые чипы выходят из строя со временем, потому что компаунд, которым они покрыты, начинает пропускать влагу. Синтезатор давно не выпускается. Но многим нужны эти чипы. Один парень занялся их реверс-инженирингом, и собрал свой на современных компонентах. Ну и я купил 6 таких. Ребята, это чудо!

Красота
Источник

Платка толщиной в пол миллиметра. Полосы по краям — скрайбирование. Такая процарапанная борозда. Они сделаны специально для того, чтобы покупатель выломал голосовой чип из этой опалубки. Когда я выламывал свой… Ух! Это чистый восторг! Хрум, хрум.

К чему я это? А к тому, что можно сделать красивую железку вообще без корпуса!

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js