Рубрика «программирование микроконтроллеров» - 28

Введение

Знакомый многим интерфейс PCI Express или PCIe был доступен разработчикам систем на ПЛИС уже тогда, когда он только начинал распространяться в цифровой технике. В это время существовало решение, в котором программное ядро подключалось ко внешней микросхеме физического уровня [5]. Это позволяло создавать одноканальную линию PCIe со скоростью 2,5 гигатранзакций в секунду. В дальнейшем, благодаря развитию технологий, физический уровень интерфейса перекочевал в аппаратные блоки PCIe внутри самих ПЛИС; количество возможных каналов увеличилось до 8, а в ряде новых микросхем — и до 16; вслед за современными стандартами выросли возможные скорости передачи данных.

В то же время, в русскоязычных источниках по-прежнему затруднительно найти вспомогательные материалы по работе с аппаратными ядрами современных ПЛИС, не так и много информации доступно по самому интерфейсу PCIe. Руководство к аппаратным ядрам PCI Express подразумевает, что разработчик уже ознакомился со стандартом и понимает основы передачи данных между устройством и персональным компьютером (ПК). Однако обилие информации в самом стандарте PCIe не дает сразу же разобраться в том, какие шаги необходимо предпринять, чтобы успешно передать данные от устройства в память ПК или обратно. Чтобы получить более полную картину, немалую часть сведений приходится собирать по крупицам из разных источников. Для разработчиков систем на ПЛИС фирмы Intel сложность также заключается в том, что большинство доступных материалов и статей описывают работу с аппаратными ядрами ПЛИС фирмы Xilinx.

В данной статье автор постарается рассказать о том, что необходимо знать разработчику систем на ПЛИС для работы с интерфейсом PCI Express; рассмотрит особенности работы с аппаратными ядрами PCI Express ПЛИС V-й серии фирмы Intel в варианте Avalon-ST.
Читать полностью »

image

Небольшой рассказ о том, как впихнуть невпихуемое и отобразить в реальном времени трехмерную графику при помощи контроллера, у которого недостаточно ни скорости, ни памяти для этого.
Читать полностью »

Привет! Хочу познакомить вас с проектом Rust Embedded. Он позволяет нам использовать язык программирования Rust для разработки под встроенные платформы (Embedded Linux / RTOS / Bare Metal).
Rust Embedded. Разработка под процессоры Cortex-M3 на примере отладочной платы STM32F103C8T6 (Black Pill) - 1

В этой статье, мы рассмотрим компоненты, которые необходимы для начала разработки под микропроцессоры Cortex-M3. После этого, напишем простой пример — моргание встроенным светодиодом.
Читать полностью »

Приветствую! Ранее я уже рассказывал в статье о своем проекте контроллера заряда для небольшой СЭС с алгоритмом поиска ТММ. Сей проект вялотекущий из-за нехватки времени и порой отcутствия настроения, но все же он развивается. С момент последней статьи я сделал еще 2 ревизии железа, проверил разные схемотехнические решения, например, способы измерения тока и как итог — пришел к финальной версии аппаратной части о которой сегодня и пойдет рассказ.

Все исходники на железную часть проекта открыты и доступны на github — тут.

Фото МРРТ контроллера

Фото МРРТ контроллера

Читать полностью »

Как известно, старшие STM'ки имеют приличные частоты и объёмы ОЗУ. Ну а раз так, то почему бы не запустить 3D-графику на таких контроллерах? Да нет ничего проще!
Читать полностью »

Насколько мне известно, довольно многим интересно подключить микроконтроллер к обычному монитору и попробовать что-либо вывести на экран. В этой статье пойдёт речь о создании простейшей VGA-видеокарты на базе микроконтроллера atmega168-20.
Читать полностью »

Введение

STM32CubeMonitor — утилита для удобного отображения данных с контроллеров семейства STM32. Причем не требуется никакого дополнительного оборудования, только плата с контроллером и программатор (я пробовал и китайский свисток и оригинальный st-linkv2). Слово «Cube» в название не означает, привязку к CubeMxHAL от вас требуется всего лишь прошивка в формате "*.elf", что не может не радовать. Данная утилита позволяет чрезвычайно быстро и просто выводить данные с контроллера в реальном времени в виде графика, а так же осуществлять постобработку(присутствуют наборы основных математических и тригонометрических функций).
Читать полностью »

В ожидании часов спроектировал девайс на STM32. По функциональности задумывалось реализовать простой диктофон или плеер и посмотреть на сколько возможна обработка звука на STM32F103 семействе, хотя бы с использованием Fixed-Point

STM-32 Минимальная аудио плата - 1

Для реализации минимальной аудио платы я взял контроллер который имеет ЦАП, АЦП и может работать с СД картой не только по SPI но и желательно через SDIO. STM32F103RCT6 подходит.
Заказал 5 штук на Али за 7$ с копейками, на случай если что-то пойдет не так. Дисплей и горсть электретных микрофонов лежит в запасах. Кварцевые резонаторы думаю взять в ЧипДип

Разрабатывать в среде разработки STM32CubeIDE32 очень удобно. Можно сконфигурировать HAL в CubeIDE, а потом делать схемотехнику соединений

STM-32 Минимальная аудио плата - 2

Читать полностью »

Jupyter Notebook — любимый инструмент-среда для data scientist'ов, аналитиков, инженеров, математиков, студентов и даже для нас — самых обычных ученых в экспериментальной физике.

Этот инструмент предназначен для работы с интерпретируемыми языками и удобного графического представления данных. Долгое время мы просто считали на нем, используя Python и математические библиотеки (numpy, SciPy, matplot и т.д.). Но оказывается данная среда не так проста и имеет гораздо больший потенциал. Очень неожиданно, но Jupyter позволяет легко манипулировать электронными устройствами на микроконтроллерах, может служить чем-то вроде REPL среды для МК только без слабенького MicroPython и внушительной поддержкой переферии чипа, причем все это почти из коробки.

Эксперименты с микроконтроллерами в Jupyter Notebook - 1

Читать полностью »

Привет! Мы вдруг поняли, что наша последняя статья про Эльбрус вышла год назад. Поэтому мы решили исправить эту досадную оплошность, ведь мы не бросили эту тему!

Сложно представить распознавание без нейронных сетей, поэтому мы расскажем о том, как мы запустили 8-битные сетки на Эльбрусе и что из этого получилось. Вообще, модель с 8-битными коэффициентами и входами и 32-битными промежуточными вычислениями крайне популярна. Например, Google [1] и Facebook [2] завели ее собственные реализации, которые оптимизируют доступ в память, задействуют SIMD и позволяют ускорить вычисления на 25% и больше без заметного снижения точности (это конечно зависит от архитектуры нейронной сети и вычислителя, но нужно же было объяснить, насколько это круто?).

8-битные сети на Эльбрусе, есть ли смысл? - 1Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js