Рубрика «преобразование фурье»

Уравнение пьезопроводности, которое также известно как уравнение диффузии или уравнение теплопроводности - это наиболее распространенное дифференциальное уравнение, которое, наряду с волновым уравнением, возникает во многих приложениях мат-физики при моделировании процессов протекающих в жидкостях и передачи тепла.

Читать полностью »

Большие простые числа: преобразование Фурье - 1

В одной из предыдущих статей я рассказал о математических алгоритмах, позволяющих проверить простоту очень большого числа. Но в основе всех тех алгоритмов лежит одна базовая операция — перемножение двух больших чисел. Именно операции длинного умножения занимают 99,9% времени выполнения любого теста простоты. Как же умножение реализуется на практике? Говорят, что при помощи Читать полностью »

Всем привет!

Читать полностью »

В цифровой обработке сигналов оконные функции широко используются для ограничения сигнала во времени и их названия хорошо известны всем, кто так или иначе сталкивался с дискретным преобразованием Фурье: Ханна, Хэмминга, Блэкмана, Харриса и прочие. Но являются ли они достаточными, можно ли придумать что-то новое и есть ли в этом смысл?

В этой статье мы рассмотрим вывод оконной функции с новыми свойствами, используя Wolfram Mathematica. Предполагается также, что читатель имеет общие представления о цифровой обработке сигналов в контексте обсуждаемого вопроса и как минимум знаком со статьёй из википедии.

Оконные функции своими руками - 1
Читать полностью »

Пять лет назад на Хабре была опубликована статья «Печать и воспроизведение звука на бумаге» — о системе создания и проигрывания спектрограмм. Затем, полтора года назад Meklon опубликовал квест, в котором такая чёрно-белая логарифмическая спектрограмма стала одним из этапов. По авторскому замыслу, её надо было распечатать на принтере, отсканировать смартфоном с приложением-проигрывателем, и воспользоваться таким образом «надиктованным» паролем.
Рисуем звук - 1

У меня в тот момент не было в досягаемости ни принтера, ни смартфона, так что меня заинтересовали два аспекта задачи:

  1. Как проще всего расшифровать спектрограмму без дополнительных устройств и без дополнительного софта — желательно, прямо в браузере?
  2. Можно ли её расшифровать вообще без софта — «на глаз»?

Читать полностью »

Скорее всего, вам известны следующие соотношения еще со школы:

$sin(alpha + beta)=sinalpha times cosbeta + cosalpha times sinbeta \ cos(alpha + beta)=cosalpha times cosbeta - sinalpha times sinbeta$

Когда вы в детстве впервые познакомились с этой формулой, скорее всего, вашим первым чувством была боль из-за того, что эту формулу надо запомнить. Это очень плохо, потому что на самом деле вам не нужно запоминать эту формулу — она сама выводится, когда вы поворачиваете треугольник на бумаге. На самом деле, я делаю то же самое, когда записываю эту формулу. Это толкование будет очевидным к середине этой статьи. Но сейчас, чтобы оставить все веселье на потом и отодвинуть момент, когда вы скажете "Эврика!", давайте подумаем, а зачем нам вообще задумываться об этой формуле.

Трюк с тригонометрией - 2

Читать полностью »

Зачастую при разработке алгоритмов мы упираемся в предел вычислительной сложности, который, казалось бы, преодолеть невозможно. Преобразование Фурье имеет сложность $O(n^2)$, а быстрый вариант, предложенный около 1805 года Гаусом1 (и переизобретенный в 1965 году Джеймсом Кули и Джоном Тьюки) $O(nlog(n))$. В данной статье хочу вам показать, что можно получить результаты преобразования за линейное время $O(n)$ или даже достичь константной сложности $O(1)$ при определенных условиях, которые встречаются в реальных задачах.
Преобразование Фурье. The Fast and the Furious - 5
Читать полностью »

В недавней статье «Амплитудная модуляция произвольного сигнала» её автор довольно сумбурно попытался представить своё понимание формирования спектра при амплитудной модуляции. Но отсутствие иллюстраций и избыток математики с привлечением интегральных преобразований помешало сообществу понять мысли автора и оценить статью по достоинству; в то время как тема это достаточно простая — и рассмотреть которую мы попробуем ещё раз, на этот раз с картинками и привлечением Wolfram Mathematica.

Итак, идея амплитудной модуляции состоит в том, чтобы передавать низкочастотный сигнал — голос или музыку — модулируя высокочастотный (несущий) сигнал, многократно превышающий слышимый диапазон и занимающий узкую полосу частот в радиоэфире. Сама модуляция осуществляется простым умножением сигнала на несущий:
Амплитудная модуляция на пальцах - 1

Амплитудная модуляция на пальцах - 2
Читать полностью »

С наступающим!
Приближается Новый год, а значит, пора срочно создавать настроение! Ну и как всегда в это время года рождаются десятки электронных схем различных цветомузыкальных установок.
Чего только самобытные мастера не придумают. От трехцветных моргалок до лазерных многолучевых установок с управлением по MIDI интерфейсу.
Невероятно эффектная цветомузыка на Arduino и светодиодах - 1
Как большой поклонник, так называемых адресных светодиодов, хочу показать вам самую простою, но удивительную цветомузыку. Я вообще такой ни разу не видел. Пока не собрал за один вечер. Итак, визуализатор звука!
Читать полностью »

Введение

Публикации по методу Фурье условно можно разделить на две группы. Первая группа так называемых познавательных публикаций, например, [1,2].

Вторая группа публикаций касается применения преобразований Фурье в технике, например, при спектральном анализе [3,4].

Ни в коем случае не умоляя достоинства этих групп публикации стоит признать, что без классификации, или хотя бы попытки осуществить такую классификацию, получить системное представление о методе Фурье, по моему мнению, затруднительно.

Задачи публикации

Провести классификацию методов преобразования Фурье на примерах их программной реализации средствами Python. При этом для облегчения чтения использовать формулы только в программном коде с соответствующими пояснениями.

Гармонический анализ и синтез

Гармоническим анализом называют разложение функции f(t), заданной на отрезке [0, Т] в ряд Фурье или в вычислении коэффициентов Фурье по формулам.

Гармоническим синтезом называют получение колебаний сложной формы путем суммирования их гармонических составляющих (гармоник).

Программная реализация

#!/usr/bin/python
# -*- coding: utf-8 -*
from scipy.integrate import quad # модуль для интегрирования
import matplotlib.pyplot as plt # модуль для графиков
import numpy as np # модуль для операций со списками и массивами
T=np.pi; w=2*np.pi/T# период и круговая частота
def func(t):# анализируемая функция
         if t<np.pi:
                  p=np.cos(t)
         else:
                  p=-np.cos(t)
         return p
def func_1(t,k,w):# функция для расчёта коэффициента a[k] 
         if t<np.pi:
                  z=np.cos(t)*np.cos(w*k*t)
         else:
                  z=-np.cos(t)*np.cos(w*k*t)
         return z
def func_2(t,k,w):#функция для расчёта коэффициента b[k] 
         if t<np.pi:
                  y=np.cos(t)*np.sin(w*k*t)
         else:
                  y=-np.cos(t)*np.sin(w*k*t)
         return y
a=[];b=[];c=4;g=[];m=np.arange(0,c,1);q=np.arange(0,2*np.pi,0.01)# подготовка списков для численного анализа
a=[round(2*quad(func_1, 0, T, args=(k,w))[0]/T,3) for k in m]# интеграл для a[k], k -номер гармоники 
b=[round(2*quad(func_2, 0, T, args=(k,w))[0]/T,3) for k in m]# интеграл для b[k], k -номер гармоники
F1=[a[1]*np.cos(w*1*t)+b[1]*np.sin(w*1*t) for t in q]#функции для гармоник
F2=[a[2]*np.cos(w*2*t)+b[2]*np.sin(w*2*t) for t in q]
F3=[a[3]*np.cos(w*3*t)+b[3]*np.sin(w*3*t) for t in q]
plt.figure()
plt.title("Классический гармонический анализ функции n при t<pi  f(t)=cos(t)  при t>=pi  f(t)=-cos(t)")
plt.plot(q, F1, label='1 гармоника')
plt.plot(q, F2 , label='2 гармоника')
plt.plot(q, F3, label='3 гармоника')
plt.xlabel("Время t")
plt.ylabel("Амплитуда А")
plt.legend(loc='best')
plt.grid(True)
F=np.array(a[0]/2)+np.array([0*t for t in q-1])# подготовка массива для анализа с a[0]/2
for k in np.arange(1,c,1):
         F=F+np.array([a[k]*np.cos(w*k*t)+b[k]*np.sin(w*k*t) for t in q])# вычисление членов ряда Фурье
plt.figure()
P=[func(t) for t in q]
plt.title("Классический гармонический синтез")
plt.plot(q, P, label='f(t)')
plt.plot(q, F, label='F(t)')
plt.xlabel("Время t")
plt.ylabel("f(t),F(t)")
plt.legend(loc='best')
plt.grid(True)
plt.show()

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js