Рубрика «predictive maintenance»

Привет!

С начала года мы провели больше 10 хакатонов и воркшопов по всей стране. В мае мы вместе с AI-community организовывали хакатон по направлению «Цифровизация производства». До нас хакатон про data science на производстве ещё не делали, и сегодня мы решили подробно рассказать о том, как это было.

Хакатон по Data Science в СИБУРе: как это было - 1

Цель была проста. Нужно было оцифровать наш бизнес на всех его этапах (от поставок сырья до производства и прямых продаж). Само собой, должны были решаться и задачи прикладного характера, например:

  • устранение простоев оборудования, технологических нарушений и сбоев;
  • повышение производительности и вместе с этим — качества продукции;
  • снижение затрат на логистику и закупки;
  • ускорение запуска и вывода на рынок новых продуктов.

В чём главная ценность таких задач? Правильно, в максимальном приближении к настоящим бизнес-кейсам, а не к абстрактным проектам. Первая задача уже подробно описана на Хабре одним из участников (спасибо, cointegrated Давид!). А второй задачей, вынесенной на хакатон, стала необходимость оптимизировать процесс совмещения плановых ремонтов ж/д-вагонов логистического парка. Это взяли прямо из нашего текущего бэклога, немного адаптировав для участников, дабы сделать её понятнее.

Итак, описание задачи.
Читать полностью »

Хакатон "Цифровой завод", организованный Сибуром и AI Community, состоялся на прошлых выходных. Одна из двух задач хакатона была на тему predictive maintenance — нужно было предсказывать проблемы в работе экструдера. Её мы и решили. Рассказ сосредоточен в основном на data science'ной части решения, и о том, как нам удалось научиться неплохо прогнозировать довольно редкие события.
Машинное обучение и экструдер полипропилена: история 3 места на хакатоне Сибура - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js