Рубрика «predictive analytics»

В предыдущих статьях (I, II, III) я подробно рассказывал о разработке сервиса для поиска выгодных б/у автомобилей в РФ.
Поездив продолжительное время на различных б/у машинах, я задумался о приобретении нового авто и решил этот вопрос подробно изучить. В крупных городах существует огромное количество официальных дилеров, по крайней мере для популярных брендов. Дилеры отличаются друг от друга перечнем автомобилей в наличии и размером предоставляемых скидок на различные модели. В поисках интересующих меня автомобилей мне не хотелось обзванивать и посещать всех дилеров подряд. На мой взгляд, разумно было предварительно отобрать по априорной информации только тех дилеров, которые предоставляют самые низкие цены на интересующие меня модели и комплектации. Тот факт, что при личном общении, если уметь торговаться, размер скидки может существенно возрасти никак не противоречит цели в первую очередь посетить дилеров, предоставляющих наиболее выгодные цены на рынке.
Я собрал данные о новых автомобилях, проанализировал, оформил в виде сервиса, и под конец года, когда скидки у дилеров максимальны, решил поделиться им с вами.

Как программист новую машину подбирал - 1

Читать полностью »

Начав выбирать себе цвет для покраски стены в комнате, я столкнулся с интересной вещью. Весь этот процесс с самого начала начал напоминать работу над каким-нибудь IT-ML-Blah-blah-blah-аналитическим проектом.

Тут есть и заказчик, который не очень понимает, что именно он хочет, но хочет, чтобы все было хорошо и ему нравилось. Еще есть несколько заинтересованных лиц со стороны заказчика, которые не могут договориться по вопросу, что такое «хорошо». Есть какие-то переформулировки задачи, которые под большим вопросом релевантны этому самому «хорошо», но по-крайней мере как-то решаемы. Есть подбор методов решения и попытки их реализовывать. Есть итеративность, которая имплицитно, но монотонно, ведет к какому-то решению, которое бы всех устроило. И есть некоторые странные выводы, которые бы с трудом можно было бы сделать в «реальном» проекте, потому что из-за общей нервозности и участия в процессе денег фокус внимания редко останавливается на этих местах процесса.

Data-driven decision на примере выбора цвета для покраски стен - 1


Читать полностью »

В двух предыдущих частях (I, II) своего повествования о сервисе для поиска выгодных автомобилей я подробно изложил техническую сторону вопроса — постановку задачи и ее решение.

В этой статье я более подробно остановлюсь на результатах и возможностях сервиса robasta.ru.

Для тех, кто не читал предыдущие статьи и не горит желанием этого делать:

Robasta.ru — сервис для поиска выгодных автомобилей (цена которых ниже рыночной) по данным со всех основных сайтов с объявлениями о продаже б/у автомобилей в РФ.
Перед покупкой автомобиля большинство людей хочет продать предыдущий и сделать это быстро и эффективно — для этого на нашем сервисе существует услуга оценки автомобиля, воспользовавшись которой, вы получите pdf-сертификат, где будет указана стоимость вашего авто в данный момент, стоимость в будущем (если достаточно статистических данных по вашей модели) и многое другое.
Для экономии вашего времени на сайте реализован telegram-информатор, позволяющий получать уведомления о новых объявлениях интересующих вас моделей автомобилей с необходимой вам частотой.

image
Читать полностью »


Это третья публикация в рамках помощи участникам конкурса «SAP Кодер-2017».


Каждое предприятие в процессе своей жизнедеятельности генерирует значительное количество данных, как «больших», так и не очень. Эти данные часто можно использовать для получения нового знания, которое, в свою очередь может оказать существенное влияние на стратегию развития бизнеса или тактику поведения в некоторые локальные моменты работы. Сейчас, в связи с развитием вычислительной техники и ростом объема накопленных данных, большое развитие получили численные методы, позволяющие извлекать полезную информацию из массива «сырых» данных и использовать ее в различных бизнес-сценариях.

Предиктивная аналитика на платформе SCP - 1
Читать полностью »

В предыдущей статье на примере покупки Mercedes-Benz E-klasse не старше 2010 года выпуска стоимостью до 1.5 млн рублей в Москве была рассмотрена задача поиска выгодных автомобилей. Под выгодными следует понимать предложения, цена которых ниже рыночной в текущий момент среди объявлений, собранных со всех наиболее авторитетных сайтов по продаже б/у автомобилей в РФ.

На первом этапе в качестве метода машинного обучения была выбрана множественная линейная регрессия, были рассмотрены правомерность ее использования, а также плюсы и минусы. Простая линейная регрессия была выбрана в качестве ознакомительного алгоритма. Очевидно, что существует еще много методов машинного обучения для решения поставленной задачи регрессии. В этой статье я хотел бы рассказать вам, как именно я выбирал наиболее оптимальный алгоритм машинного обучения для исследуемой модели, который в настоящее время используется в реализованном мною сервисе — robasta.ru.

Как программист машину покупал. Часть II - 1

Читать полностью »

Недавно я озадачился поиском б.у. автомобиля, взамен только что проданного, и, как это обычно бывает, на эту роль претендовали несколько конкурентов.

Как известно, для покупки авто на территории РФ существует несколько крупных авторитетных сайтов (auto.ru, drom.ru, avito.ru), поиску на которых я и отдал предпочтение. Моим требованиям отвечали сотни, а для некоторых моделей и тысячи, автомобилей, с перечисленных выше сайтов. Помимо того, что искать на нескольких ресурсах неудобно, так еще, прежде чем ехать смотреть авто “вживую”, я хотел бы отобрать выгодные (цена которых относительно рынка занижена) предложения по априорной информации которую предоставляет каждый из ресурсов. Я, конечно, очень хотел решить несколько переопределенных систем алгебраических уравнений (возможно и нелинейных) высокой размерности вручную, но пересилил себя, и решил этот процесс автоматизировать.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js