В любой крупной компании данных всегда больше, чем понимания, что с ними делать. Они лежат в базах, логах, документах — огромный слабоструктурированный ресурс. Идея о том, что можно научить машину находить в этом хаосе полезные паттерны, когда-то казалась фантастикой, а сегодня это работа руководителя отдела машинного обучения Postgres Professional Савелия Батурина. Вместе с коллегами он на практике связывает мощь языковых моделей с СУБД, чтобы извлекать из данных реальную пользу, рассказывать, по каким граблям для этого пришлось пройти.
