Рубрика «популяционная динамика»

Начало здесь.

Disclaimer 1

Я математик, а не врач. По всем вопросам здоровья, коронавирусов и смысла жизни консультируйтесь с медиками, не будьте глупыми людьми.

Disclaimer 2

По этическим соображениям, результаты работы модели, калиброванной по параметрам COVID-19, публиковаться не будут. Возможно, вы с моим решением не согласны, но вам придется с этим жить.

Как мы увидели в прошлой части, режим самоизоляции достаточно эффективен, в частности он сбивает экспоненциальный рост числа заболевших до степенного и тем самым позволяет снизить нагрузку на здравоохранения до приемлемой (“flatten the curve”, ага). Тем не менее, режим самоизоляции длится очень долго, наносит огромный ущерб экономике и возникает резонный вопрос: нельзя ли обойтись пусть более жесткими, но краткосрочными мерами?

Для наглядности экспериментов я слегка модифицировал инфекционный агент, сделав его чуть менее заразным, для большей иллюстративности интересующих нас эффектов. Помимо этого, я снизил порог насыщения минздрава до 5% популяции (это все равно очень и очень много). И да, чтоб не слишком ранить чувствительные души, шанс смерти индивидуума, которому «не досталось койки», вырастает теперь в три раза, а не в десять, как раньше. Цените мой гуманизм! Остальные параметры такие же (самое важное: инкубационный период, когда пацак заразен, длится 10 дней и столько же длится период лечения).
Читать полностью »

Disclaimer 1.
Я математик, НЕ ВРАЧ и не являюсь профильным специалистом-эпидемиологом, а свою последнюю научную работу на тему матмоделирования эпидемий написал без малого 20 лет назад. По всем вопросам здоровья, коронавирусов и смысла жизни консультируйтесь с лечащим врачом, не будьте глупыми людьми.

Disclaimer 2.
Ниже будет некоторое количество графиков. Перед их построением я умышленно декалибровал и упростил модель, отстроившись от параметров COVID-19. Приведенные графики демонстрируют развитие эпидемии некоторого условного вируса в некоторой условной популяции в условном времени. Не делайте предсказаний о ходе текущей пандемии, опираясь на мои картинки, не будьте глупыми людьми.

Ну, а теперь — поехали! По понятным причинам, ныне изрядно подскочил интерес ко всякому пандемическому, и всевозможные математические и не очень математические модели бродят по соцсетям стаями. Число же эпидемиологов и специалистов по системам дифференциальных уравнений и вовсе превысило все мыслимые пределы. Тем не менее, во всем этом информационном буйстве странным образом обойдены молчанием перколяционные, они же стохастические имитационные, модели. Этот недостаток мы сейчас немедленно исправим. Кстати, впервые о подобных моделях (как и многом другом) я прочитал в замечательной книжке Гулда и Тобочника «Компьютерное моделирование в физике».

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js