Рубрика «плитка»

Как неуловимый «эйнштейн» помог решить давнюю математическую задачу - 1

В ноябре прошлого года, после десяти лет неудачных попыток, Дэвид Смит, самопровозглашенный «любитель фигур» из Бридлингтона в Восточном Йоркшире, Англия, заподозрил, что, возможно, он наконец-то решил давнюю задачку в математике замощения плоскости: иначе говоря, он решил, что нашёл «эйнштейна».

В менее поэтичных терминах, «эйнштейн» — это «апериодическая моноплитка», фигура, которая покрывает плоскость или бесконечную двумерную плоскую поверхность неповторяющимся образом. (Термин «эйнштейн» происходит от немецкого «ein stein» или «один камень», в более свободной трактовке — «одна плитка» или «одна фигура»). Ваши обычные обои или кафельный пол представляют собою часть бесконечного узора, который периодически повторяется; при смещении или «переносе» узор может быть точно наложен сам на себя. Апериодическая плитка не обладает такой «трансляционной симметрией», и математики давно ищут единственную фигуру, которая могла бы покрыть плоскость такой плиткой. Эта задача известна под названием «проблемы Эйнштейна».
Читать полностью »

Переведя гипотезу Келлера на понятный компьютерам язык поиска в графах, исследователи, наконец, решили задачу покрытия пространств плиткой

Компьютерный поиск помог разобраться с 90-летней математической задачей - 1

Команда математиков, наконец, разобралась с гипотезой Келлера – однако не своими силами. Вместо этого они обучили целый парк компьютеров, и те решили её.

Гипотеза Келлера, выдвинутая 90 лет назад Отт-Генрихом Келлером, связана с задачей покрытия пространств идентичными плитками. Она утверждает, что если замостить двумерное пространство двумерными квадратными плитками, то хотя две из них должны будут соприкасаться сторонами. То же предсказание гипотеза делает для любых измерений – то есть, при заполнении 12-мерного пространства 12-мерными «квадратами», хотя бы у двух из них должна будет найтись общая сторона.

Годами математики бились над этой гипотезой, доказывая её истинность для одних измерений и ложность для других. И к прошлой осени вопрос оставался нерешённым только для семимерного пространства.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js