Математики из Ливерпульского университета в своей новой работе опубликовали несколько неизвестных ранее способов разбиения диска на равные части. Эта работа принадлежит к разделу геометрии, изучающему т.н. паркеты — замощение плоскости многоугольниками без пробелов и перекрытий. На работу учёных вдохновили поиски способов резки пиццы – знакомой большинству из нас процедуры.
При замощении плоскости геометрическими фигурами (плитками) можно ставить и решать разные задачи. Одна из самых интересных задач – использование моноэдрических плиток. В этом случае все плитки имеют одну и ту же форму, или, точнее говоря, конгруэнтны. Это значит, что две любые плитки можно совместить при помощи перемещений, поворотов или зеркального отражения.
Набор форм плиток, используемых для замещения плоскости, называют протоплитками. Интересно, что не существует математического метода, позволяющего заранее сказать, можно ли при помощи заданных протоплиток заместить плоскость. Например, известно, что из следующих 24 гептамондов (фигур, составленных из семи равносторонних треугольников) лишь один непригоден для моноэдрического замощения плоскости. Но какой именно?
Читать полностью »