Рубрика «Перцептрон» - 2

Итак в статье Перцептрон Розенблатта — что забыто и придумано историей? в принципе как и ожидалось всплыло некоторая не осведомленность о сути перцептрона Розенблатта (у кого-то больше, у кого-то меньше). Но честно говоря я думал будет хуже. Поэтому для тех кто умеет и хочет слушать я обещал написать как так получается, что случайные связи в первом слое выполняют такую сложную задачу отображения не сепарабельного (линейно не разделимого) представления задачи в сепарабельное (линейно разделимое).

Честно говоря, я мог сослаться просто на теорему сходимости Розенблатта, но так как сам не люблю когда меня «посылают в гугл», то давайте разбираться. Но я исхожу из-то, что Вы знаете по подлинникам, что такое перцептрон Розенблатта (хотя проблемы в понимании всплыли, но я все же надеюсь что только у отдельных людей).

Читать полностью »

На хабре — уже есть несколько статей про искусственные нейронные сети. Но чаще говорят о т.н. многослойном перцептроне и алгоритме обратного распространения ошибки. А знаете те ли Вы что эта вариация ничем не лучше элементарного перцептрона Розенблатта?

Например, вот в этом переводе Что такое искусственные нейронные сети? мы можем увидеть, что о перцептроне Розенблатта пишут такое:

Демонстрация персептона Розенблатта показала, что простые сети из таких нейронов могут обучаться на примерах, известных в определенных областях. Позже, Минский и Паперт доказали, что простые пресептоны могут решать только очень узкий класс линейно сепарабельных задач, после чего активность изучения ИНС уменьшилась. Тем не менее, метод обратного распространения ошибки обучения, который может облегчить задачу обучения сложных нейронных сетей на примерах, показал, что эти проблемы могут быть и не сепарабельными.

Причем это встречается на разный лад в различных статьях, книгах и даже учебниках.

Но это, наверно, самая великая реклама в области ИИ. А в науке это называется фальсификация.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js