Рубрика «параллельные вычисления»

Два потока, одно ядро: как устроена одновременная многопоточность - 1


Одновременная многопоточность (Simultaneous multithreading, SMT) — это функция, позволяющая процессору одновременно обрабатывать команды из двух разных потоков. Но задавались ли вы когда-нибудь вопросом, как это работает? Как процессор отслеживает два потока и распределяет ресурсы между ними?

В статье я объясню, как устроена эта функция. Понимание внутреннего устройства SMT поможет вам решить, подходит ли она для ваших продакшен-серверов. Иногда SMT способна резко повысить производительность системы, но в некоторых случаях она приводит к замедлению. Знание подробностей позволит вам сделать правильный выбор.

Примечание: основная часть изложенного в статье относится к реализации SMT компании Intel, также называемой гипертредингом (hyper-threading). Она основана на научной статье компании, опубликованной в 2002 году.

Читать полностью »

Как правильно тестировать конкурентные структуры данных - 1


Есть потрясающая библиотека Rust под названием loom, которую можно использовать для тщательного тестирования неблокируемых (lock-free) структур данных. Я давно хотел разобраться, как она работает. И сейчас хочу! Но недавно я случайно реализовал небольшой эксперимент, который, как мне кажется, содержит часть идей loom, поэтому о нём стоит написать. Моя цель — не научить вас тому, что нужно использовать на практике (если вы хотите этого, то почитайте документацию loom), а, скорее, вывести пару идей из фундаментальных принципов.Читать полностью »

Как одной строкой сделать 24-ядерный сервер медленнее ноутбука - 1

Лучше учиться на чужих ошибках, поэтому мы в М.Видео-Эльдорадо стремимся изучать зарубежный опыт. Предлагаем и вам посмотреть перевод статьи Петра Колачковского, получившего черный пояс по прокачке производительности своего железа.Читать полностью »

Сумма целых чисел — что может быть проще? Сумма есть в SQL, в Java Stream API… в крайнем случае напишем сами. Как и всякая абстракция, она расходится с реальностью.

Вот счёт клиента в банке, по нему движения — положительные пополнения и отрицательные списания — в сумме дают текущий баланс. Так сумма работает в идеальном мире. А в реальности при большом минусе банк с отсрочкой, но предпримет нетривиальные действия вплоть до обращения в суд, чтобы закрыть финансовую брешь.

static long usualSum(LongStream changes) {
    return changes.reduce(0, (a, b) -> a + b);
}

Читать полностью »

В PostgreSQL существует очень удобный механизм рекомендательных блокировок, они же — advisory locks. Мы в «Тензоре» используем их во многих местах системы, но мало кто детально понимает, как конкретно они работают, и какие проблемы можно получить при неправильном обращении.

Фантастические advisory locks, и где они обитают - 1
Читать полностью »

О структуре параллельных вычислений или доводы против оператора «Go» - 1

Каждый язык, поддерживающий параллельные (конкурентные, асинхронные) вычисления, нуждается в способе запуска кода параллельно. Вот примеры из разных API:

go myfunc();                                // Golang

pthread_create(&thread_id, NULL, &myfunc);  /* C with POSIX threads */

spawn(modulename, myfuncname, [])           % Erlang

threading.Thread(target=myfunc).start()     # Python with threads

asyncio.create_task(myfunc())               # Python with asyncio

Есть много вариантов нотации и терминологии, но одна семантика — запустить myfunc параллельно основной программе и продолжить родительский поток выполнения (англ. "Control Flow")

Читать полностью »

Джулия и параллельные вычисления - 1

С момента выхода в августе 2018, язык Julia активно набирает популярность, войдя в топ 10 языков на Github и топ 20 самых популярных профессиональных навыков по версии Upwork. Для начинающих стартуют курсы и выпускаются книги. Julia используется для планирования космических миссий, фармакометрики и климатического моделирования.

Перед тем как приступить к распределенным вычислениям в Julia обратимся к опыту тех, кто уже испробовал данную возможность нового ЯП для прикладных задач — от уравнения диффузии на двух ядрах, до астрономических карт на суперкомпьютере.

Читать полностью »

Массивный и аппаратный параллелизм — горячие темы 21 века. Для этого есть несколько приятных причин и одна довольно печальная.

Две приятные причины: комбинация отличной работы GPU в играх и при этом их неожиданное побочное использования в глубоком обучении ИИ, поскольку там на аппаратном уровне реализован массивный параллелизм. Печальная причина в том, что скорость однопроцессорных систем с 2006 года упёрлась в законы физики. Нынешние проблемы с утечкой и тепловым пробоем резко ограничивают увеличение тактовой частоты, а классическое снижение напряжения теперь натыкается на серьёзные проблемы с квантовым шумом.

Конкурируя за внимание публики, производители процессоров пытаются впихнуть в каждый чип всё больше процессорных ядер, рекламируя теоретическую общую производительность. Также быстро растут усилия на конвейеризацию и спекулятивные методы выполнения, которые применяют многопоточность под капотом, чтобы видимый программисту одиночный процессор быстрее обрабатывал инструкции.
Читать полностью »

Совсем недавно мне пришлось решать очередную тривиальную учебную задачу от своего преподавателя. Однако, решая ее, мне удалось обратить внимание на вещи о коих я ранее вовсе не задумывался, возможно, не задумывались и Вы. Эта статья скорее будет полезна студентам да и всем, кто начинает свой путь в мир параллельного программирования с использованием MPI.

Бесполезный отложенный неблокирующий обмен сообщениями в MPI: лайт-аналитика и туториал для тех, кто немножечко «в теме» - 1

Наше &laquoДано: &raquo

Итак, суть нашей, в сущности вычислительной задачи, заключается в том, чтобы сравнить во сколько раз программа, использующая неблокирующие отложенные двухточечные передачи быстрее той, что использует блокирующие двухточечные передачи. Измерения будем проводить для входных массивов размерностью 64, 256, 1024, 4096, 8192, 16384, 65536, 262144, 1048576, 4194304, 16777216, 33554432 элементов. По умолчанию предлагается решать ее четырьмя процессами. А вот, собственно, и то, что мы будем считать:

Читать полностью »

Как массивное распараллеливание возвышает эффективность мозга над возможностями ИИ

Почему человеческий мозг так эффективен? - 1

Мозг – устройство сложное; у людей он содержит порядка 100 млрд нейронов и около 100 триллионов соединений между ними. Его часто сравнивают с другой сложной системой с огромными возможностями решения задач: цифровым компьютером. В мозге и компьютере содержится большое количество элементарных единиц – нейронов или транзисторов, соответственно – подключенных к сложным схемам, обрабатывающим информацию, передаваемую электрическими сигналами. На глобальном уровне архитектуры мозга и компьютера немного похожи, поскольку состоят из практически отдельных контуров для ввода, вывода, центральной обработки, и памяти.

Кто лучше справляется с решением проблем – мозг или компьютер? Учитывая быстрое развитие компьютерных технологий в последние десятилетия, можно решить, что побеждает компьютер. И действительно, компьютеры разрабатывают и программируют с целью победы над человеческими мастерами в сложных играх, таких, как шахматы в 1990-х, и го, совсем недавно – а также в конкурсах на энциклопедические знания, таких, как телевикторина "Jeopardy!" Но пока что люди побеждают компьютеры во множестве задач, связанных с реальным миром – от способности различить на дороге велосипедиста или пешехода до поднятия со стола чашки с чаем и аккуратного перемещения её ко рту – не говоря уже о концептуализации и творчестве.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js