Рубрика «параллельное программирование» - 31

Я искал, с чем бы сравнить программирование на С++ и я вспомнил фильм 1990 года режиссера Тима Бертона — «Эдвард руки-ножницы»Читать полностью »

Нагружаем Node под завязку (2 я из 12 статей о Node.js от команды Mozilla Identity)От переводчика: Это вторая статья из цикла о Node.js от команды Mozilla Identity, которая занимается проектом Persona. Эта статья написана по мотивам выступления Ллойда Хилайеля на конференции Node Philly 2012 в Филадельфии.

Перевод первой статьи, "Охотимся за утечками памяти в Node.js", был опубликован в пятницу.


Процесс Node.js выполняется на единственном ядре процессора, так что построение масштабируемого сервера на Node требует особой заботы. Благодаря возможности писать нативные расширения и продуманному набору API для управления процессами, есть несколько разных способов заставить Node выполнять код параллельно. Мы рассмотрим их в этой статье.

Кроме того, мы представим модуль compute-cluster — маленькую библиотеку, которая облегчает управление коллекцией процессов для выполнения распределённых вычислений.

Постановка задачи

Для Persona нам было необходимо создать сервер, который справился бы с обработкой множества запросов со смешанными характеристиками. Мы выбрали для этой цели Node.js. Нам надо было обрабатывать два основных типа запросов: «интерактивные», которые не требовали сложных вычислений и должны были выполняться быстро, чтобы интерфейс приложения был отзывчивым, и «пакетные», которые отнимали примерно пол-секунды процессорного времени и могли быть ненадолго отложены без ущерба для удобства пользователя.

В поисках наилучшей архитектуры приложения мы долго и тщательно обдумывали способы обработки этих типов запросов с учётом юзабилити и стоимости масштабирования и в конце концов сформулировали четыре основных требования:

  • Насыщение. Наше решение должно было использовать все доступные ядра процессора.
  • Отзывчивость. Пользовательский интерфейс должен оставаться отзывчивым. Всегда.
  • Отказоустойчивость. Когда нагрузка зашкаливает, мы должны нормально обслужить столько клиентов, сколько сможем, а остальным показать сообщение об ошибке.
  • Простота. Решение должно легко и постепенно интегрироваться в уже работающий сервер.

Вооружившись этими требованиями, мы можем осмысленно сравнивать разные подходы.
Читать полностью »

В последние годы требования к приложениям значительно изменились. Десятки серверов, время отклика в несколько секунд, оффлайновое обслуживание, которое могло длиться часами, гигабайты данных — такими были большие приложения буквально несколько лет назад. Сегодня же приложения работают абсолютно на всём, начиная с простых мобильников и заканчивая кластерами из тысячи процессоров. Пользователи ожидают миллисекундного времени отклика и стопроцентного аптайма, в то время как данные выросли до петабайтов.

Первоначально эту нишу занимали крупные инновационные интернет-компании типа Google или Twitter, однако такие требования к приложениям начали всплывать во многих областях индустрии. Финансовые и телекоммуникационные компании первыми начали внедрять новые практики, чтобы удовлетворить новым требованиям, а теперь подтягиваются и остальные.

Новые требования требуют новых технологий. Предыдущие решения делали упор на управляемые сервера и контейнеры. Масштабирование достигалось засчёт покупки более крутых серверов и использования многопоточности. Для добавления новых серверов приходилось применять комплексные, неэффективные и дорогие проприетарные решения.

Однако прогресс не стоит на месте. Архитектура приложений эволюционировала в соответствии с изменившимися требованиями. Приложения, разработанные на основе этой архитектуры, мы называем Реактивными Приложениями. Такая архитектура позволяет программистам создавать событийно-ориентированные, масштабируемые, отказоустойчивые и отзывчивые приложения — приложения, работающие в реальном времени и обеспечивающие хорошее время реакции, основанные на масштабируемом и отказоустойчивом стеке и которые легко развернуть на многоядерных и облачных архитектурах. Эти особенности критически важны для реактивности.

Читать полностью »

Intel® Parallel Studio XE 2013 Service Pack 1 – что нового?

Пакет Intel® Parallel Studio XE давно известен разработчикам, в том числе и по публикациям в блоге Intel на Хабре. Недавно вышло обновление - Intel® Parallel Studio XE 2013 Service Pack 1 (SP1), имеющее ряд интересных новшеств. Становится проще программировать для со-процессоров и встроенной графики, во многом благодаря поддержке стандарта OpenMP 4.0 (частичной). Поиск ошибок стал гибче, утечки памяти теперь обнаруживаются до завершения процесса, т.е. их можно искать в долгоиграющих сервисах и «падающих» приложениях. Найти узкие места в производительности будет легче благодаря новому представлению дерева вызовов, оценке накладных расходов и детальной информации о параллельных конструкциях.
Читать полностью »

Приглашаем принять участие в конференции Intel Software Conference 2013
Уважаемыее! Приглашаем вас принять участие в ежегодной конференции Intel Software Conference 2013, которая состоится 17 сентября в Иркутске и 19 сентября в Москве.
Вашему вниманию будут предложены доклады, посвященные двум флагманским программным продуктам Intel для разработчиков — Intel Parallel Studio XE и Intel Cluster Studio XE. Специалистов, занимающихся разработкой программных решений для встроенных систем на платформах Intel, также заинтересует обзор нового специализированного набора инструментов Intel System Studio. Разработчикам вычислительно-интенсивных и облачных решений предназначены доклады о портировании приложений на платформу Intel Xeon Phi.
В течение дня будет организована демозона, в которой ведущие специалисты Intel покажут возможности новейших средств разработки, включая инструменты для создания и отладки многопоточных программ и возможности нового вычислительного сопроцессора Intel Xeon Phi.
Зарегистрироваться на конференцию.
Читать полностью »

Rust — новый язык программирования, разрабатываемый корпорацией Mozilla. Главная цель разработчиков — создание безопасного практичного языка для параллельных вычислений. Первая версия языка была написана Грэйдоном Хором в 2006 году, а в 2009 году к разработке подключилась Mozilla. С тех пор изменения претерпел и сам компилятор, изначально написанный на OCaml: он был успешно переписан на Rust с использованием LLVM в качестве back-end.

Основным продуктом, разрабатываемым на Rust, является новый веб-движок Servo, разработка которого также ведется Mozilla. В 2013 году к разработке Rust и Servo присоединилась корпорация Samsung Electronics, при активном участии которой код движка Servo был портирован на ARM архитектуру. Поддержка языка столь серьезными игроками IT индустрии не может не радовать и дает надежду на его дальнейшее активное развитие и совершенствование.

Язык Rust просто не может не понравится системным и сетевым разработчикам, тем, кому по работе приходится писать много кода, производительность которого критична, на C и C++, потому что:

  1. Rust — новый язык программирования, разрабатываемый корпорацией Mozilla. Главная цель разработчиков — создание безопасного практичного языка для параллельных вычислений. Первая версия языка была написана Грэйдоном Хором в 2006 году, а в 2009 году к разработке подключилась Mozilla. С тех пор изменения претерпел и сам компилятор, изначально написанный на OCaml: он был успешно переписан на Rust с использованием LLVM в качестве back-end.
    Основным продуктом, разрабатываемым на Rust, является новый веб-движок Servo, разработка которого также ведется Mozilla. В 2013 году к разработке Rust и Servo присоединилась корпорация Samsung Electronics, при активном участии которой код движка Servo был портирован на ARM архитектуру. Поддержка языка столь серьезными игроками IT индустрии не может не радовать и дает надежду на его дальнейшее активное развитие и совершенствование.
    Язык Rust просто не может не понравится системным и сетевым разработчикам, тем, кому по работе приходится писать много кода, производительность которого критична, на C и C++, потому что:
  2. Rust ориентирован на разработку параллельных приложений. В нем реализована поддержка легких (зеленых) потоков, асинхронного обмена сообщениями без копирования пересылаемых данных, возможность выбора размещения объектов на стеке, в локальной куче задачи или куче, разделяемой между задачами.
  3. Rust ориентирован на разработку эффективных по скорости и памяти приложений. Использование LLVM в качестве back-end позволяет производить компиляцию приложения в нативный код, а простой интерфейс взаимодействия с C кодом – легко использовать уже имеющиеся высокопроизводительные библиотеки.
  4. Rust ориентирован на разработку кросс-платформенных приложений. Компилятор официально поддерживается на платформах Windows, Linux и Mac OS X, при этом существуют порты на другие *NIX платформы, такие как FreeBSD. Также поддерживается и несколько архитектур процессоров: i386, x64 и ARM.
  5. Rust позволяет писать в разных стилях: объектно-ориентированном, функциональном, actor-based, императивном.
  6. Rust поддерживает уже существующие отладочные инструменты: GDB, Valgrind, Instruments.

Читать полностью »

Скоро первое сентября. Кто-то собирается в школу, кто-то — в институт. А мы предлагаем начать новые проекты с компилятором clang, который теперь поддерживает OpenMP!

Проект доступен здесь. Сейчас в его основе лежит clang 3.3. Небыстрый процесс ревью уже идет, и скоро код будет залит в транк clang'а, а значит войдет в его новые релизы.

Реализована полная поддержка стандарта OpenMP версии 3.1. Успешно проходятся следующие тесты: набор для валидации OpenMP от OpenUH Research Compiler, SPEC OMP2012 и внутренние тесты Intel. Исполняемый код c OpenMP, собранный clang'ом, демонстрирует производительность, сравнимую с другими компиляторами, поддерживающими OpenMP.
В качестве библиотеки времени выполнения использована библиотека Intel OpenMP Runtime Library, также доступная под свободной лицензией.
Читать полностью »

В прошлый раз я предложил заглянуть в код MRI, чтобы разобраться с реализацией GIL и ответить на оставшиеся вопросы. Что мы сегодня и сделаем.

Как работает GIL в Ruby. Часть 2Черновая версия этой статьи изобиловала кусками кода на C, однако, из-за этого суть терялась в деталях. В финальной версии почти нет кода, а для любителей поковыряться в исходниках я оставил ссылки на функции, которые упоминал.

В предыдущей серии

После первой части остались два вопроса:

  1. Делает ли GIL array << nil атомарной операцией?
  2. Делает ли GIL код на Ruby потокобезопасным?

На первый вопрос можно ответив, взглянув на реализацию, поэтому начнем с него.
Читать полностью »

Пять из четырех разработчиков признают, что многопоточное программирование понять непросто.

Как работает GIL в Ruby. Часть 1Большую часть времени, что я провел в Ruby-сообществе, печально известная GIL оставалась для меня темной лошадкой. В этой статье я расскажу о том, как наконец познакомился с GIL поближе.

Первое, что я услышал о GIL, никак не было связано с тем, как она работает или для чего нужна. Все, что я услышал — что GIL — это плохо, поскольку ограничивает параллелизм, или то, что это хорошо, потому что делает код потокобезопасным. Пришло время, я приноровился к многопоточному программированию и понял, что на самом деле все сложнее.

Я хотел знать, как работает GIL с технической точки зрения. На GIL нет ни спецификации, ни документации. По сути, это особенность MRI (Matz's Ruby Implementation). Команда разработчиков MRI ничего не говорит по поводу того, как GIL работает и что гарантирует.

Впрочем, я забегаю вперед.
Читать полностью »

JRE позволяет абстрагироваться от конкретной платформы, делая написание кросс-платформенного кода намного проще. Конечно до идеала Write once, run anywhere не дотягивает, но жизнь облегчает существенно.

С изобилием framework'ов и полнотой собственной стандартной библиотеки, мысль о том, что программа запускается на вполне конкретном железе, постепенно отходит на второй план. В большинстве случаев это оправдано, но иногда жизнь вносит свои коррективы.

Подавляющее большинство современных процессоров имеют кэш-память для хранения часто используемых данных. Кэш-память делится на блоки (Сache line). Механизмы реализующие Cache coherence обеспечивают синхронизацию кэш-памяти между ядрами процессора(ов) в компьютерной системе.

Термин false sharing означает доступ к разным объектам в программе, разделяющим один и тот же блок кэш-памяти. False sharing в многопотоковом приложении, когда в одном блоке оказываются переменные модифицируемые из разных потоков, ведет к снижению производительности и увеличению нагрузки на Cache coherence механизмы. Подробно о том как это происходит, можно прочесть в статье на эту тему.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js