Рубрика «параллельное программирование» - 10

Фьютекс (futex — сокращение от «Fast userspace mutex») — это механизм, предложенный разработчиками Linux из IBM в 2002 году и вошедший в ядро в конце 2003 года. Основной идеей было предоставить более эффективный способ синхронизации пользовательских потоков с минимальным количеством обращений к ядру ОС.

В этой статье мы сделаем обзор фьютексов, попытаемся понять принципы их работы, а также используем их в качестве кирпичиков для построения более высокоуровневых (и знакомых нам) объектов синхронизации.

Важный момент: фьютексы — это достаточно низкоуровневый инструмент, напрямую его использовать стоит лишь при разработке фундаментальных библиотек, вроде стандартной библиотеки C/C++. Очень маловероятно, что вам понадобится использовать фьютексы в обычном прикладном приложении.
Читать полностью »

Создание бота для участия в AI mini cup. Опыт применения GPU - 1
продолжение статьи1 и статьи 2.
Ниже под катом, расскажу об опыте автора по использованию GPU для расчетов, в том числе в рамках создания бота для участия в AI mini cup. Но скорее это эссе на тему GPU.

-Имя у вас волшебное…
-Знаете что, Джоэл?.. Волшебство уходит...

Читать полностью »

CUDA всем хороша, пока под рукой есть видеокарта от Nvidia. Но что делать, когда на любимом ноутбуке нет Nvidia видеокарты? Или нужно вести разработку в виртуальной машине?

Я постараюсь рассмотреть в этой статье такое решение, как фреймворк rCUDA (Remote CUDA), который поможет, когда Nvidia видеокарта есть, но установлена не в той машине, на которой предполагается запуск CUDA приложений. Тем, кому это интересно, добро пожаловать под кат.

TLDR

rCUDA (Remote CUDA) — фреймворк, реализующий CUDA API, позволяющий использовать удалённую видеокарту. Находится в работоспособной бета-версии, доступен только под Linux. Основная цель rCUDA — полная совместимость с CUDA API, вам не нужно никак модифицировать свой код, достаточно задать специальные переменные среды.

Читать полностью »

Конкурентная сосиска

Аннотация

Обработка данных в реальном времени ровно один раз (exactly-once) — задача крайне нетривиальная и требующая серьезного и вдумчивого подхода на всей цепочке вычислений. Некоторые даже считают, что такая задача невыполнима. В реальности хочется иметь подход, обеспечивающий отказоустойчивую обработку вообще без каких-либо задержек и использование различных хранилищ данных, что выдвигает новые еще более жесткие требования, предъявляемые к системе: concurrent exactly-once и гетерогенность персистентного слоя. На сегодняшний день такое требование не поддерживает ни одна из существующих систем.

Предложенный подход последовательно раскроет секретные ингредиенты и необходимые понятия, позволяющие относительно просто реализовать гетерогенную обработку concurrent exactly-once буквально из двух компонент.

Введение

Разработчик распределенных систем проходит несколько стадий:

Стадия 1: Алгоритмы. Здесь происходит изучение основных алгоритмов, структур данных, подходов к программированию типа ООП и т.д. Код исключительно однопоточный. Начальная фаза вхождения в профессию. Тем не менее, достаточно непростая и может длиться годами.

Стадия 2: Многопоточность. Далее возникают вопросы извлечения максимальной эффективности из железа, возникает многопоточность, асинхронность, гонки, дебагинг, strace, бессонные ночи… Многие застревают на этом этапе и даже начинают с какого-то момента ловить ничем не объяснимый кайф. Но лишь единицы доходят до понимания архитектуры виртуальной памяти и моделей памяти, lock-free/wait-free алгоритмах, различных асинхронных моделях. И почти никто и никогда — верификации многопоточного кода.

Стадия 3: Распределенность. Тут такой треш творится, что ни в сказке сказать, ни пером описать.

Читать полностью »

Изучаем многопоточное программирование в Go по картинкам - 1
Скорее всего, вы уже слышали о языке программирования Go, популярность его постоянно растет, что вполне обоснованно. Этот язык простой, быстрый и опирается на прекрасное сообщество. Один из самых любопытных аспектов языка — это модель многопоточного программирования. Примитивы, положенные в ее основу, позволяют создавать многопоточные программы легко и просто. Эта статья предназначена для тех, кто хочет изучить эти примитивы: горутины и каналы. И, через иллюстрации, я покажу, как с ними работать. Надеюсь, это будет для вас хорошим подспорьем в дальнейшем изучении.
Читать полностью »

Java и Project Reactor. Эпизод 2 - 1

Привет! Удивительно, но первая часть статьи даже кому-то понравилась.
Отдельное спасибо за ваши отзывы и комментарии. У меня для вас плохая хорошая новость: нам ещё есть о чём поговорить! А если точнее, то о некоторых деталях работы Reactor.

Читать полностью »

Свой асинхронный tcp-сервер за 15 минут с подробным разбором - 1


Ранее я представил пару небольших постов о потенциальной роли Spring Boot 2 в реактивном программировании. После этого я получил ряд вопросов о том, как работают асинхронные операции в программировании в целом. Сегодня я хочу разобрать, что такое Non-blocking I/O и как применить это знание для создания небольшого tcp–сервера на python, который сможет обрабатывать множество открытых и тяжелых (долгих) соединений в один поток. Знание python не требуется: все будет предельно просто со множеством комментариев. Приглашаю всех желающих!
Читать полностью »

Как известно в кругу Erlang разработчиков: только Erlang разработчики знают как "жить" правильно а все остальные "живут" — неправильно. Не пытаясь оспаривать этот факт, приведем пример Clojure приложения в стиле Erlang, используя библиотеку Otplike.

Читать полностью »

Как компьютерный инженер, который пять лет занимался проблемами кэша в Intel и Sun, я немного разбираюсь в когерентности кэша. Это одна из самых трудных концепций, которые пришлось изучить ещё в колледже. Но как только вы действительно её освоили, то приходит гораздо лучшее понимание принципов проектирования систем.

Вы можете удивиться: зачем же разработчику ПО думать о механизме кэширования в CPU? Отвечу. С одной стороны, многие понятия из концепции когерентности кэша непосредственно применимы в распределённых системах и на уровнях изоляции СУБД. Например, представление реализации когерентности в аппаратных кэшах помогает лучше понять разницу в моделях согласованности (консистентности) — отличие строгой согласованности (strong consistency) от согласованности в конечном счёте (eventual consistency). У вас могут появиться новые идеи, как лучше обеспечить согласованность в распределённых системах, используя исследования и принципы из аппаратного обеспечения.

С другой стороны, неправильные представления о кэшах часто приводят к ложным утверждениям, особенно когда речь идёт о параллелизме и состоянии гонки. Например, часто говорят о трудности параллельного программирования, потому что «у разных ядер в кэшах могут быть разные/устаревшие значения». Или что квалификатор volatile в языках вроде Java нужен, чтобы «предотвратить локальное кэширование общих данных» и принудительно «читать/записывать только в основную память».
Читать полностью »

HoleyBeep: объяснение и эксплоит - 1

В былые времена люди использовали a для генерирования неприятных «гудков» из спикеров системных блоков. Это было особенно неудобно, если хотелось генерировать более сложные звуковые последовательности вроде 8-битной музыки. Поэтому Джонатан Найтингейл написал программу beep. Это была коротенькая и очень простая программа, позволявшая тонко настраивать звучание из спикера.

С появлением X-сервера всё стало куда сложнее.

Чтобы beep могла работать, пользователь должен был либо быть суперпользователем, либо являться владельцем текущего tty. То есть beep всегда будет работать у root-пользователя или у любого локального, но не будет работать у не-root удалённого пользователя. При этом любой терминал (например, xterm), подключённый к X-серверу, считается «удалённым», и поэтому beep работать не будет.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js