Грубо говоря, теорема Гёделя о неполноте утверждает, что существуют истинные математические утверждения, которые невозможно доказать. Когда я был в 11-м классе, мы втроём с учителем геометрии г-н Олсеном и моим другом Умой Рой провели пять недель, читая оригинальное доказательство Гёделя. Почему так долго? Отчасти потому, что мы были ещё школьниками. Отчасти потому, что 24-летний Гёдель был не самым талантливым писателем. Но главным образом потому, что доказательство на самом деле довольно трудное.
Это может показаться удивительным, ведь всё доказательство по сути можно уместить в один абзац. Гёдель начинает с построения математического утверждения, по существу эквивалентного предложению,
Это утверждение невозможно доказать.
Затем Гёдель рассматривает, что будет в случае, если это утверждение ложно.Читать полностью »