Рубрика «парадокс Берри»

Парадоксы о сжатии данных - 1 Задача сжатия данных в своей простейшей форме может относиться к числам и их обозначениям. Числа можно обозначать числительными («одиннадцать» для числа 11), математическими выражениями («два в двадцатой» для 1048576), строковыми выражениями («пять девяток» для 99999), именами собственными («число зверя» для 666, «год смерти Тьюринга» для 1954), или произвольными их комбинациями. Годится любое обозначение, по которому собеседник сможет однозначно определить, о каком числе речь. Очевидно, что сообщить собеседнику «факториал восьми» эффективнее, чем эквивалентное обозначение «сорок тысяч триста двадцать». Здесь возникает логичный вопрос: какое обозначение для заданного числа самое короткое?

Философ Бертран Рассел в 1908 опубликовал «парадокс Берри», который затрагивает вопрос обозначений чисел с противоположной стороны: какое самое маленькое число, для обозначения которого недостаточно восьмидесяти букв?
Такое число обязано существовать: из восьмидесяти русских букв и пробелов можно составить всего 3480 обозначений, значит, с использованием восьмидесяти букв можно обозначить не более 3480 чисел. Значит, некое число, не большее чем 3480, обозначить таким образом невозможно.

Значит, этому числу будет соответствовать обозначение «самое маленькое число, для обозначения которого недостаточно восьмидесяти букв», в котором всего 78 букв! С одной стороны, это число обязано существовать; с другой, если это число существует, то его обозначение ему не соответствует. Парадокс!Читать полностью »

Грубо говоря, теорема Гёделя о неполноте утверждает, что существуют истинные математические утверждения, которые невозможно доказать. Когда я был в 11-м классе, мы втроём с учителем геометрии г-н Олсеном и моим другом Умой Рой провели пять недель, читая оригинальное доказательство Гёделя. Почему так долго? Отчасти потому, что мы были ещё школьниками. Отчасти потому, что 24-летний Гёдель был не самым талантливым писателем. Но главным образом потому, что доказательство на самом деле довольно трудное.

Это может показаться удивительным, ведь всё доказательство по сути можно уместить в один абзац. Гёдель начинает с построения математического утверждения, по существу эквивалентного предложению,

Это утверждение невозможно доказать.

Затем Гёдель рассматривает, что будет в случае, если это утверждение ложно.Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js