Раньше мы уже искали необычные модели Playboy с помощью библиотеки Python Scikit-learn. Теперь мы продемонстрируем некоторые возможности библиотек SymPy, SciPy, Matplotlib и Pandas на живом примере из разряда занимательных школьных задач по математике. Цель — облегчить порог вхождения при изучении Python библиотек для анализа данных.
Рубрика «pandas» - 8
Python и красивые ножки: как я бы знакомил сына с математикой и программированием
2016-01-26 в 21:25, admin, рубрики: matplotlib, pandas, python, scipy, sympy, дифференцирование, занимательная математика, Занимательные задачки, математика, оптимизация, Программирование, символьные вычисленияKaggle и Titanic — еще одно решение задачи с помощью Python
2015-12-28 в 16:16, admin, рубрики: kaggle, matplotlib, ml, pandas, python, sklearn, titanic, xdboost, машинное обучение, Программирование, Спортивное программированиеХочу поделиться опытом работы с задачей известного конкурса по машинному обучению от Kaggle. Этот конкурс позиционируется как конкурс для начинающих, а у меня как раз не было почти никакого практического опыта в этой области. Я немного знал теорию, но с реальными данными дела почти не имел и с питоном плотно не работал. В итоге, потратив пару предновогодних вечеров, набрал 0.80383 (первая четверть рейтинга).
В общем эта статья для еще начинающих от уже начавшего.
Необычные модели Playboy, или про обнаружение выбросов в данных c помощью Scikit-learn
2015-02-23 в 0:15, admin, рубрики: anomaly detection, data mining, machine learning, outlier detection, pandas, PCA, python, scikit-learn, unsupervised learning, Алгоритмы Мотивированный статьей пользователя BubaVV про предсказание веса модели Playboy по ее формам и росту, автор решил углубиться if you now what I mean в эту будоражащую кровь тему исследования и в тех же данных найти выбросы, то есть особо сисястые модели, выделяющиеся на фоне других своими формами, ростом или весом. А на фоне этой разминки чувства юмора заодно немного рассказать начинающим исследователям данных про обнаружение выбросов (outlier detection) и аномалий (anomaly detection) в данных с помощью реализации одноклассовой машины опорных векторов (One-class Support Vector Machine) в библиотеке Scikit-learn, написанной на языке Python.
Построение модели SARIMA с помощью Python+R
2014-01-27 в 20:10, admin, рубрики: data mining, pandas, python, метки: pandasВведение
Добрый день, уважаемые читатели.
После написания предыдущего поста про анализ временных рядов на Python, я решил исправить замечания, которые были указаны в комментариях, но при их исправлении я столкнулся с рядом проблем, например при построении сезонной модели ARIMA, т.к. подобной функции а пакете statsmodels я не нашел. В итоге я решил использовать для этого функции из R, а поиски привели меня к библиотеке rpy2 которая позволяетиспользовать функции из библиотек упомянутого языка.
У многих может возникнуть вопрос «зачем это нужно?», ведь проще просто взять R и выполнить всю работу в нем. Я полность согласен с этим утверждением, но как мне кажется, если данные требуют предварительной обработки, то ее проще произвести на Python, а возможности R использовать при необходимости именно для анализа.
Кроме этого, будет показано как интегрировать результаты выдачи работы функции R в IPython Notebook.
Читать полностью »
Пример решения задачи множественной регрессии с помощью Python
2013-12-17 в 4:36, admin, рубрики: data mining, pandas, python, метки: pandas, pythonВведение
Добрый день, уважаемые читатели.
В прошлых статьях, на практических примерах, мной были показаны способы решения задач классификации (задача кредитного скоринга) и основ анализа текстовой информации (задача о паспортах). Сегодня же мне бы хотелось коснуться другого класса задач, а именно восстановления регрессии. Задачи данного класса, как правило, используются при прогнозировании.
Для примера решения задачи прогнозирования, я взял набор данных Energy efficiency из крупнейшего репозитория UCI. В качестве инструментов по традиции будем использовать Python c аналитическими пакетами pandas и scikit-learn.
Читать полностью »
Основы анализа данных на python с использованием pandas+sklearn
2013-11-14 в 6:59, admin, рубрики: data mining, pandas, python, метки: data mining, pandas, python Добрый день уважаемые читатели. В сегодняшней посте я продолжу свой цикл статей посвященный анализу данных на python c помощью модуля Pandas и расскажу один из вариантов использования данного модуля в связке с модулем для машинного обучения scikit-learn. Работа данной связки будет показана на примере задачи про спасенных с "Титаника". Данное задание имеет большую популярность среди людей, только начинающих заниматься анализом данных и машинным обучением.
Читать полностью »
Введение в визуализацию данных при анализе с помощью Pandas
2013-10-11 в 13:58, admin, рубрики: pandas, python, метки: pandas, python Доброго времени суток, уважаемые читатели.
Как обещалось в предыдущей статье, сегодня я продолжу рассказ о модуле pandas и анализе данных на языке Python. В данной статье хотелось бы затронуть тему быстрой визуализации данных результатов анализа. В этом нам помогут библиотека для визуализации данных matplotlib и среда разработки Spyder.
Читать полностью »
Введение в анализ данных с помощью Pandas
2013-10-09 в 13:10, admin, рубрики: pandas, python, метки: pandas, python Сегодня речь пойдет о пакете Pandas. Данный пакет делает Python мощным инструментом для анализа данных. Пакет дает возможность строить сводные таблицы, выполнять группировки, предоставляет удобный доступ к табличным данным, а при наличии пакета matplotlib дает возможность рисовать графики на полученных наборах данных. Далее будут показаны основы работы с пакетом, такие как загрузка данных, обращение к полям, фильтрация и построение сводных.
Читать полностью »
Немного о Pivot tables в PostgreSQL и Python
2012-12-17 в 15:32, admin, рубрики: pandas, pivot tables, postgresql, python, Песочница, метки: pandas, pivot tables, postgresql, pythonДоброго времени суток.
Работая в институте, мне приходится иметь дело с большим количеством полу-структурированной информации. Здесь приставка «полу» значит, что в целом все данные похожи, но, как правило, распиханы в локальных папках на компьютерах у сотрудников, в .xls, .txt или в бинарном формате. Информация представляет из себя данные полученные с различных приборов( датчиков уровня, температуры, скорости течений, атмосферного давления, влажности и так далее до 20-30 различных параметров). Все приборы выгружают данные каждый в своем формате: либо в ascii либо бинарный формат, который потом обрабатывается, и, на выходе, снова получаются ascii. Ну вообщем все как всегда, вы и сами представляете весь этот хаос.
Захотелось мне все это дело запихнуть в одну общую базу данных, что бы не искать нужные данные нужной версии в нужной папке, что занимает крайне много времени. Опыт разработки различных систем (в основном гео-информационных) имеется. Но то, что делалось раньше, содержало в себе исключительно обработанные данные, и в целом все эти системы делались под заказчика. Никакого комплекса автоматизации для самих себя не было.
Обработка всего этого хозяйства — вполне стандартные вещь, ничего нового и интересного: проверка временных рядов на целостность(если нужна – интерполяция), построение кучи различных графиков, запуск различных моделей на этих данных, обработка вывода моделей(снова куча графиков), вывод статистики. О последней я и расскажу в этой статье.