Рубрика «overfitting»

Dropout — метод решения проблемы переобучения в нейронных сетях - 1

Переобучение (overfitting) — одна из проблем глубоких нейронных сетей (Deep Neural Networks, DNN), состоящая в следующем: модель хорошо объясняет только примеры из обучающей выборки, адаптируясь к обучающим примерам, вместо того чтобы учиться классифицировать примеры, не участвовавшие в обучении (теряя способность к обобщению). За последние годы было предложено множество решений проблемы переобучения, но одно из них превзошло все остальные, благодаря своей простоте и прекрасным практическим результатам; это решение — Dropout (в русскоязычных источниках — “метод прореживания”, “метод исключения” или просто “дропаут”).
Читать полностью »

О проблеме one-shot обучения для нейросетей - 1Современные нейросети для успешного обучения требуют обучающие датасеты большого размера. Они не умеют что-то понимать с одного примера. Это затрудняет их использование в тех областях, где больших датасетов не создано. В то же время, человеку нередко бывает достаточно пары частных примеров, чтобы сделать глубокое обобщение. Предлагаю поговорить о том, что уже имеется по этой проблеме, и что из нейрофизиологии можно было бы (наверное) использовать для улучшения ситуации.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js