Рубрика «оценка связанности событий»

В своей книге Нейт Сильвер приводит такой пример: допустим требуется разместить инвестиции в нескольких предприятиях, которые могут обанкротиться с вероятностью $5%$. Требуется оценить свои риски. Чем выше вероятность банкротства, тем меньше мы будем вкладывать денег. И наоборот, если вероятность банкротства стремится к нулю, то можно инвестировать без ограничений.

Если имеется 2 предприятия, тогда вероятность того, что они оба обанкротятся и мы потеряем все вложения $P=0.05 cdot 0.05=0.0025$. Так учит стандартная теория вероятности. Но что будет, если предприятия связаны и банкротство одного ведет к банкротству другого?

Крайним случаем является ситуация, когда предприятия полностью зависимы. Вероятность двойного банкротства $ P$( банкрот1 & банкрот2 ) = $P$( банкрот1 ), тогда вероятность потери всех вложений равна $P=0.05$. Методика оценки риска имеет большой разброс $P$ от 0.05 до 0.0025 и реальное значение зависит от того насколько правильно мы оценили связанность двух событий.

Оценка связанности событий с помощью Байеса - 7
При оценке инвестиций в $N$ предприятий имеем $P$ от $0.05$ до $0.05^N$. То есть максимальная возможная вероятность остается большой $P=0.05$ и старая поговорка «не клади яйца в одну корзину» не сработает, если упадет прилавок со всеми корзинами сразу.

Таким образом наши оценки имеют колоссальный разброс, и сколько куда вкладывать остается вопросом. А ведь надо хорошо считать, прежде чем вкладывать. Нейт Сильвер говорит, что незнание этих простых законов аналитиками привело к крахам фондового рынка в 2008 году, когда рейтинговые агенства США оценивали риски, но не оценивали связанность рисков. Что в конце концов привело к эффекту домино, когда сначала свалился крупный игрок и увлек за собой других.

Попробуем разобрать эту проблему, решив простую математическую задачу после ката.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js