Рубрика «открытый ключ»

Уитфилд Диффи — ученый и шифропанк - 1

Этого человека, немного похожего на худощавого Санту, знают, наверное, все без исключения специалисты по криптографии. Уитфилд Диффи — не только автор концепции криптографии с открытым ключом, но также один из первых и самых известных в мире шифропанков. Диффи — один из немногих лауреатов премии Тьюринга, присуждаемой за выдающиеся достижения в сфере IT, а также научный сотрудник Фонда Маркони и института Исаака Ньютона. Вот история человека, внесшего огромный вклад в информационную безопасность и сохранение конфиденциальности личной информации миллионов пользователей интернета по всему миру.
Читать полностью »

Математики доказали, что многочлены не помогут взломать RSA - 1

Недавно в журнале Quanta вышел материал, в котором автор рассказывал про удивительный с точки зрения неискушенных читателей феномен, доказанный математиками. Его суть в том, что почти все многочлены определенного типа — неприводимые, то есть не поддаются разложению. Это доказательство применяется во многих областях чистой математики. Но также это хорошая новость для одного из столпов современной жизни — цифрового шифрования.

Для надежного хранения цифровой информации широко используется шифрование с помощью алгоритма RSA. Это прокачанная версия схемы, которую может придумать даже семиклассник, чтобы обмениваться сообщениями с друзьями: каждой букве присваивается свой номер, который умножается на некий секретный, заранее оговоренный ключ. Чтобы расшифровать сообщение, достаточно просто поделить его на секретный ключ.

RSA-шифрование работает схожим образом. Приведем сильно упрощенное объяснение. Пользователь придумывает сообщение и выполняет над ним определенные математические операции, включающие в себя умножение на очень большое число (длиной в несколько сотен цифр). Единственный способ расшифровать сообщение — найти простые множители полученного результата*.

*

Простые множители какого-либо числа — это простые числа, которые необходимо перемножить, чтобы получилось это число. Так, для числа 12 это 2*2*3, а для числа 495 это 3, 3, 5 и 11.

Безопасность RSA-шифрования базируется на том факте, что математике неизвестны быстрые способы найти простые множители очень больших чисел. И если зашифрованное сообщение предназначалось не вам, и у вас нет ключа для его расшифровки, то попытки найти этот ключ могут занять добрую тысячу лет. Причем это справедливо и для самых современных компьютеров, с помощью которых все равно не удастся подобрать правильные простые множители.

Но есть и обходной путь.Читать полностью »

Криптография русского крестьянина - 1

Какая связь есть между умножением методом русских крестьян и современной криптографией? В отличие от обычно изучаемых процедур умножения, его можно запросто адаптировать под вычисление степеней, а не произведений; и в некоторых криптосистемах требуется вычисление именно степеней.

Должен сразу признаться, что статья не будет посвящена тому, как русским крестьянам удавалось обмениваться информацией втайне от своих помещиков.

Умножение методом русских крестьян

Если вы не знали о нём раньше, то это довольно любопытный подход к умножению, который не требует запоминания таблиц умножения — для него достаточно способности удваивать и делить пополам целые числа. Не очень понятно, как он относится к русским крестьянам: похоже, так же, как «датская сдоба» к Дании. Этот метод был известен ещё древним египтянам, которые явно жили намного раньше русских крестьян.

Общее описание метода просто, но не слишком информативно. Тем не менее, давайте начнём с него.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js