Рубрика «optical character recognition»

Извлечение текста из файлов PDF при помощи Python - 1

▍ Введение

В эпоху больших языковых моделей (Large Language Model, LLM) и постоянно расширяющейся сферы их применений непрерывно растёт и важность текстовых данных.

Существует множество типов документов, содержащих подобные виды неструктурированной информации, от веб-статей и постов в блогах до рукописных писем и стихов. Однако существенная часть этих данных хранится и передаётся в формате PDF. В частности, выяснилось, что за каждый год в Outlook открывают более двух миллиардов PDF, а в Google Drive и электронной почте ежедневно сохраняют 73 миллионов новых файлов PDF (2).

Поэтому разработка более систематического способа обработки этих документов и извлечения из них информации позволит нам автоматизировать процесс и лучше понять этот обширный объём текстовых данных. И в выполнении этой задачи, разумеется, нашим лучшим другом будет Python.
Читать полностью »

Это мой первый пост об оптическом распознавании текста (OCR) с использованием Tesseract. Tesserast это очень популярная open source библиотека для OCR поддерживаемая Google, которая дает высокие результаты точности и поддерживает более 100 языков. В этом посте я расскажу как можно работать со стандартным словарем для языковой модели Tesseract и настроить его под свои нужды. Кому интересно, прошу под кат.Читать полностью »

Здравствуйте. Меня зовут Ибадов Илькин, я студент Уральского федерального университета.

В данной статье я хочу рассказать о своем опыте автоматизированного решения капчи компании «Google» — «reCAPTCHA». Хотелось бы заранее предупредить читателя о том, что на момент написания статьи прототип работает не так эффективно, как может показаться из заголовка, однако, результат демонстрирует, что реализуемый подход способен решать поставленную задачу.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js