Рубрика «opencv» - 3

Привет! В прошлый раз писал про проект по рентгеновской инспекции печатных плат. Сейчас мы сильно продвинулись, есть рабочий прототип софта плюс “потыкали палочкой” в Эльбрус. Про этот опыт я и хочу рассказать.

image

Интро

На старте проекта нам удалось найти дополнительное финансирование, основным условием была полная кроссплатформенность ПО, в том числе поддержка отечественных процессоров. На тот момент наиболее производительным вариантом для десктоп машин был Эльбрус 8С (пока он им и остается, 8СВ еще вроде не вышел). Мы купили две станции «Эльбрус 801-РС» напрямую от МЦСТ. Сейчас их стоимость указана на сайте, год назад были чуть дороже.

Из курьезных мелочей, с которыми столкнулись при закупке – бумажные заявки на поставку. Сразу советую заключить договор NDA, это даст доступ к свежим инструментам разработчика (оформление около месяца). Приехали машины быстро, по комплектации – есть проблема с кастомизацией на стороне МЦСТ. Проще докупить и поставить самим нужные видеокарты или периферию. Перечень проверенного оборудования/чипов карт пока есть только в багтрекере МЦСТ, хотя стоило бы опубликовать список на вики ресурсе по Эльбрусам.

Читать полностью »

Распознавание текста на картинке с помощью tesseract на Kotlin - 1

Ни для кого не секрет, что Python прочно занял первенство в ML и Data Science. А что если посмотреть на другие языки и платформы? Насколько в них удобно делать аналогичные решения?

К примеру, распознавание текста на картинке.

Читать полностью »

В предыдущих статьях был описан шеститочечный метод разворачивания этикеток и как мы тренировали нейронную сеть. В этой статье описано, как склеить фрагменты, сделанные из разных ракурсов, в одну длинную картинку.
Склеиваем несколько фотографий в одну длинную с помощью машинного обучения - 1Читать полностью »

Как не потерять ход времени, работая за компьютером. Приложение по мониторингу работы и ведению статистики - 1

Я работаю педагогом в детском технопарке «Кванториум». В период самоизоляции мы так же, как и все перешли на дистанционное обучение. И в связи с тем, что дети стали еще больше времени проводить за компьютером, администрация решила сократить академический час и делать перерывы между работой (что бы сохранить зрение). Мы написали приложение, которое подсчитывает время, проведенное за компьютером, ведет статистику в excel (полезно для родителей) и выдает звуковое оповещение о том, что пора сделать перерыв.

Приложение будем полезно тем, кто теряется во времени работая за пк и хочет вогнать себя во временные рамки или следить за тем, какая часть жизни теряется в цифровом пространстве.

Ссылка на репозиторий

Под катом подробный разбор.
Читать полностью »

В прошлой статье мы рассказали про динамические QR коды, которые записывали на VHS кассеты. Эпидемия PCM зацепила и меня, так что пришло время поковырять этот формат.

Захват с PCM процессора

Читать полностью »

Исследуем электромагнитные поля с помощью SDR приемника и OpenCV - 1

SDR-приемник, даже самый дешёвый, является весьма высокочувствительным приборчиком. Если добавить к нему специальную антенну и OpenCV, то можно будет не только привычно слушать эфир, но и посмотреть на распределение электромагнитных полей в пространстве. О таком интересном применении и пойдет речь в данной статье. Внимание! Под катом много картинок и анимации!
Читать полностью »

В конце прошлого года, я написал статью, о том как был заинтригован возможностью распознавания объектов на изображениях с помощью нейронных сетей. В той статье мы с помощью PyTorch классифицировали на видео либо ягоду малину, либо ардуино-подобный контроллер. И не смотря на то, что PyTorch мне понравился, обратился я к нему потому, что не смог с наскока разобраться с TensorFlow. Но я пообещал, что ещё вернусь к вопросу распознавания объектов на видео. Кажется пришло время сдержать обещание.

В данной статье мы попробуем на своей локальной машине дообучить уже готовую модель в Tensorflow 1.13 и Object Detection API на нашем собственном наборе изображений, а потом используем её для распознавания ягод и контроллеров, в видеопотоке веб-камеры с помощью OpenCV.

Хотите к лету улучшить навык распознавания ягод? Тогда милости прошу под кат.

«Вы уж простите, обознался...» или распознаем малину и контроллеры с помощью Tensorflow Object Detection API - 1
Читать полностью »

Хочу рассказать вам о том, как я делал и сделал самоуправляему машинку :)

Я мог бы рассказать сразу, как делать, сухо прикрепив схемы и bash команды, но так будет скучно. Предлагаю вам интересную (я надеюсь) историю о том, как лично я прошел этот путь, и куда пришел.

Те места, где было что фоткать, с фотками. Там, где про софт — скорее всего без фото.

Это будет действительно история в формате повествования, как я рассказывал бы вам за чашкой кофе. Это не про bash команды, python скрипты, и вот это вот всё.

Начнём с фотки и видео того, что получилось, и дальше вся история под катом.

Self-driving ГАЗ66 Monster Truck 1-16 - 1
Читать полностью »

Пролог

По сети сейчас гуляет видео — как автопилот Теслы видит дорогу.
У меня давно чесались руки транслировать видео, обогащенное детектором, да и в реальном времени.

Видео с облачным детектором объектов на Raspberry Pi - 1

Проблема в том, что транслировать видео я хочу с Raspberry, а производительность нейросетевого детектора на ней оставляет желать лучшего.
Читать полностью »

Задача обнаружения объектов на изображении сегодня является одной из ведущих в области машинного зрения. Ее суть заключается в том, чтобы не только классифицировать объект на снимке, но и указать его точное местоположение.
Результаты обнаружения объекта могут быть дополнены информацией о том, насколько далеко расположен данный объект. Задачу измерения расстояния можно решить с помощью камеры глубины Intel RealSense D435, измеряющей глубину в каждой точке.
В данной статье мы решим задачу измерения расстояния до объекта в режиме реального времени с помощью библиотеки OpenCV и технологии RealSense.
image
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js