Где мы все? Судя по классическому циклу зрелости, Large Language Models (LLM) уверенно маршируют к вершине «Пика завышенных ожиданий». Энтузиазм бьёт ключом: каждый день – новые анонсы и инвестиции. Как руководитель отдела инновационных проектов в «Первой грузовой компании», я вижу этот ажиотаж и сам погружен в изучение потенциала LLM для нашей отрасли. Иллюзия всесильности ИИ сейчас сильна как никогда. Мы сейчас явно находимся на пике завышенных ожиданий.
Рубрика «one-shot learning»
ИИ на подъёме: восхождение к пику ожиданий и первые уроки в реальном бизнесе
2025-07-24 в 13:24, admin, рубрики: Few-shot, llm, one-shot learning, rag, бизнес-процесс, ИИ, ИИ и машинное обучение, ии чат-бот, ии-агенты, ии-ассистентАлгоритм распознавания образов обучающийся с одного раза (One-Shot learning)
2018-06-18 в 9:34, admin, рубрики: one-shot learning, искусственный интеллект, Компьютерное зрение, машинное зрение, машинное обучениеВведение
Я хочу представить вам результат своих экспериментов с алгоритмами распознавания образов с обучением с первого раза (так называемый One-Shot Learning). В результате экспериментов выработались определённые подходы к структуризации изображения и в итоге они воплотились в несколько взаимосвязанных алгоритмов и тестовое приложение на Android, которым можно проверить качество и работоспособность алгоритмов.
Моя цель была создать алгоритм с понятным принципом работы который может найти абстрактные зависимости в картинке с первого раза (обучиться) и показать приемлемое качество распознавания (поиска подобных абстрактных зависимостей) на последующих циклах распознавания. При этом логика принятия решения должна быть прозрачной, поддающейся анализу, ближе к линейному алгоритму. На условной шкале где на одном конце мозг а на другом станок с ЧПУ он гораздо ближе к станку чем нейросети.
Когда лучше не использовать глубинное обучение
2017-10-11 в 10:53, admin, рубрики: AutoML, big data, data mining, one-shot learning, pytorch, TensorFlow, Алгоритмы, байесовский вывод, биомедицинская информатика, вероятностная нумерика, вероятностное программирование, выпуклая оптимизация, глубинное обучение, математика, машинное обучение, механистическая модель, мешок слов, нейросети, обучение с первого раза, предрассудки, размер выборки, стохастический градиент, цепь МарковаЯ понимаю, что странно начинать блог с негатива, но за последние несколько дней поднялась волна дискуссий, которая хорошо соотносится с некоторыми темами, над которыми я думал в последнее время. Всё началось с поста Джеффа Лика в блоге Simply Stats с предостережением об использовании глубинного обучения на малом размере выборки. Он утверждает, что при малом размере выборки (что часто наблюдается в биологии), линейные модели с небольшим количеством параметров работают эффективнее, чем нейросети даже с минимумом слоёв и скрытых блоков.
Далее он показывает, что очень простой линейный предиктор с десятью самыми информативными признаками работает эффективнее простой нейросети в задаче классификации нулей и единиц в наборе данных MNIST, при использовании всего около 80 образцов. Эта статья сподвигла Эндрю Бима написать опровержение, в котором правильно обученная нейросеть сумела превзойти простую линейную модель, даже на очень малом количестве образцов.
Такие споры идут на фоне того, что всё больше и больше исследователей в области биомедицинской информатики применяют глубинное обучение на различных задачах. Оправдан ли ажиотаж, или нам достаточно линейных моделей? Как всегда, здесь нет однозначного ответа. В этой статье я хочу рассмотреть случаи применения машинного обучения, где использование глубоких нейросетей вообще не имеет смысла. А также поговорить о распространённых предрассудках, которые, на мой взгляд, мешают действительно эффективно применять глубинное обучение, особенно у новичков.
Читать полностью »
