Рубрика «ods» - 5

Привет!

В последнее время машинное обучение и data science в целом приобретают все большую популярность. Постоянно появляются новые библиотеки и для тренировки моделей машинного обучения может потребоваться совсем немного кода. В такой ситуации можно забыть, что машинное обучение — не самоцель, а инструмент для решения какой-либо задачи. Мало сделать работающую модель, не менее важно качественно презентовать результаты анализа или сделать работающий продукт.

Как сделать проект по распознаванию рукописных цифр с дообучением онлайн. Гайд для не совсем начинающих - 1

Я хотел бы рассказать о том, как создал проект по распознаванию рукописного ввода цифр с моделями, которые дообучаются на нарисованных пользователями цифрах. Используется две модели: простая нейронная сеть (FNN) на чистом numpy и сверточная сеть (CNN) на Tensorflow. Вы сможете узнать, как сделать практически с нуля следующее:

  • создать простой сайт с использованием Flask и Bootstrap;

  • разместить его на платформе Heroku;

  • реализовать сохранение и загрузку данных с помощью облака Amazon s3;

  • собрать собственный датасет;

  • натренировать модели машинного обучения (FNN и CNN);

  • сделать возможность дообучения этих моделей;

  • сделать сайт, который сможет распознавать нарисованные изображения;

Для полного понимания проекта желательно знать как работает deep learning для распознавания изображений, иметь базовые знания о Flask и немного разбираться в HTML, JS и CSS.

Читать полностью »

Скорее всего, вы слышали об авторе этой лекции. Владимир ternaus Игловиков занял второе место в британском Data Science Challenge, но организаторы конкурса не стали выплачивать ему денежный приз из-за его российского гражданства. Затем наши коллеги из Mail.Ru Group взяли выплату приза на себя, а Владимир, в свою очередь, попросил перечислить деньги в Российский Научный Фонд. История получила широкий охват в СМИ.

Спустя несколько недель Владимир выступил на одной из тренировок Яндекса по машинному обучению. Он рассказал о своём подходе к участию в конкурсах, о сути Data Science Challenge и о решении, которое позволило ему занять второе место.

Читать полностью »

image

Сразу оговорюсь, что данный пост не несет большой технической нагрузки и должен восприниматься исключительно в режиме «пятничной истории». Кроме того, текст насыщен английскими словами, какие-то из них я не знаю как перевести, а какие-то просто не хочется переводить.

Краткое содержание первой части:
1. DSTL (научно-техническая лаборатория при министерстве обороны Великобритании) провела соревнование на Kaggle.
2. Соревнование закончилось 7 марта, результаты объявлены 14 марта.
3. Пять из десяти лучших команд — русскоговорящие, причем все они являются членами сообщества Open Data Science.
4. Призовой фонд в $100,000 разделили брутальный малазиец Kyle, команда Романа Соловьева и Артура Кузина, а также я и Сергей Мушинский.
5. По итогам были написаны блог-посты (мой пост, пост Артура, наш с Серегой пост на Kaggle), проведены выступления на митапах (мое выступление в Adroll, мое выстпление в H20.ai, выступление Артура в Yandex, выступление Евгения Некрасова в Mail.Ru Group), написан tech report на arxiv.

Организаторам понравилось качество предложенных решений, но не понравилось, сколько они за это соревнование отстегнули. В Каggle ушло $500k, в то время как призовые всего $100k.
Читать полностью »

image
Всегда наступает то самое время, когда обученную модель нужно выпускать в production. Для этого часто приходится писать велосипеды в виде оберток библиотек машинного обучения. Но если Ваша модель реализована на Tensorflow, то у меня для Вас хорошая новость — велосипед писать не придется, т.к. можно использовать Tensorflow Serving.

В данной статье мы рассмотрим как использовать Tensorflow Serving для быстрого создания производительного сервиса по распознаванию изображений.

Читать полностью »

Привет!

Метрики в задачах машинного обучения - 1

В задачах машинного обучения для оценки качества моделей и сравнения различных алгоритмов используются метрики, а их выбор и анализ — непременная часть работы датасатаниста.

В этой статье мы рассмотрим некоторые критерии качества в задачах классификации, обсудим, что является важным при выборе метрики и что может пойти не так.

Читать полностью »

PyMC3 — МСМС и не только

PyMC3 — MCMC и не только - 1
Привет!

В этом посте уже упоминался PyMC3. Там можно почитать про основы MCMC-сэмплирования. Здесь я расскажу про вариационный вывод (ADVI), про то, зачем все это нужно и покажу на довольно простых примерах из галереи PyMC3, чем это может быть полезно. Одним из таких примеров будет байесовская нейронная сеть для задачи классификации, но это в самом конце. Кому интересно — добро пожаловать!

Читать полностью »

Доброго дня!

Мы продолжаем наш цикл статей открытого курса по машинному обучению и сегодня поговорим о временных рядах.

Открытый курс машинного обучения. Тема 9. Анализ временных рядов с помощью Python - 1

Посмотрим на то, как с ними работать в Python, какие возможные методы и модели можно использовать для прогнозирования; что такое двойное и тройное экспоненциальное взвешивание; что делать, если стационарность — это не про вас; как построить SARIMA и не умереть; и как прогнозировать xgboost-ом. И всё это будем применять к примеру из суровой реальности.

Читать полностью »

Привет! Мы уже говорили про Theano и Tensorflow (а также много про что еще), а сегодня сегодня пришло время поговорить про Keras.
Изначально Keras вырос как удобная надстройка над Theano. Отсюда и его греческое имя — κέρας, что значит "рог" по-гречески, что, в свою очередь, является отсылкой к Одиссее Гомера. Хотя, с тех пор утекло много воды, и Keras стал сначала поддерживать Tensorflow, а потом и вовсе стал его частью. Впрочем, наш рассказ будет посвящен не сложной судьбе этого фреймворка, а его возможностям. Если вам интересно, добро пожаловать под кат.

image

Читать полностью »

Всем привет!

Открытый курс машинного обучения. Тема 8. Обучение на гигабайтах с Vowpal Wabbit - 1

Вот мы постепенно и дошли до продвинутых методов машинного обучения, сегодня обсудим, как вообще подступиться к обучению модели, если данных гигабайты и десятки гигабайт. Обсудим приемы, позволяющие это делать: стохастический градиентный спуск (SGD) и хэширование признаков, посмотрим на примеры применения библиотеки Vowpal Wabbit. Домашнее задание будет как на реализацию SGD-алгоритмов, так и на обучение классификатора вопросов на StackOverflow по выборке в 10 Гб.

Поехали!

Читать полностью »

Здравствуй!

Библиотека глубокого обучения Tensorflow - 1

Цикл статей по инструментам для обучения нейронных сетей продолжается обзором популярного фреймворка Tensorflow.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js