Рубрика «обучение с первого раза»

Я понимаю, что странно начинать блог с негатива, но за последние несколько дней поднялась волна дискуссий, которая хорошо соотносится с некоторыми темами, над которыми я думал в последнее время. Всё началось с поста Джеффа Лика в блоге Simply Stats с предостережением об использовании глубинного обучения на малом размере выборки. Он утверждает, что при малом размере выборки (что часто наблюдается в биологии), линейные модели с небольшим количеством параметров работают эффективнее, чем нейросети даже с минимумом слоёв и скрытых блоков.

Далее он показывает, что очень простой линейный предиктор с десятью самыми информативными признаками работает эффективнее простой нейросети в задаче классификации нулей и единиц в наборе данных MNIST, при использовании всего около 80 образцов. Эта статья сподвигла Эндрю Бима написать опровержение, в котором правильно обученная нейросеть сумела превзойти простую линейную модель, даже на очень малом количестве образцов.

Такие споры идут на фоне того, что всё больше и больше исследователей в области биомедицинской информатики применяют глубинное обучение на различных задачах. Оправдан ли ажиотаж, или нам достаточно линейных моделей? Как всегда, здесь нет однозначного ответа. В этой статье я хочу рассмотреть случаи применения машинного обучения, где использование глубоких нейросетей вообще не имеет смысла. А также поговорить о распространённых предрассудках, которые, на мой взгляд, мешают действительно эффективно применять глубинное обучение, особенно у новичков.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js