Рубрика «обработка текстов»

Обучение Russian SuperGLUE моделей с помощью библиотеки DeepPavlov - 1

Соревнования GLUE и SuperGLUE

В последние годы соревнования GLUE и SuperGLUEЧитать полностью »

Как Unicode уничтожает большинство ваших предположений о том, как на самом деле работают строки

7 ложных предположений о том, как устроены строки - 1

Когда речь идет о написании чего-то простого, мы, программисты, обычно действуем интуитивно. В случае с простыми вещами мы полагаемся на четкий набор предположений вместо конкретных знаний о том, как эти вещи работают. Например, мы предполагаем, что если b = a + 1, то b больше a, или что если мы применим функцию malloc для какого-то буфера, то получим необходимое количество памяти для записи. Мы не заглядываем в документацию всякий раз, когда имеем дело с мелочами.

Мы делаем так, потому что тотальная проверка замедлит работу. Однако если бы мы все-таки провели проверку, мы бы обнаружили, что обычно ошибаемся в своих предположениях. Существует арифметическое переполнение, в результате которого a + 1 может быть значительно меньше, чем a. Иногда malloc дает нам null вместо буфера и мы оказываемся в пролете.

Нам обычно приходится обжечься на таких вещах, чтобы хотя бы немного изменить свои предположения. И даже тогда мы обычно исправляем их весьма условно.
Столкнувшись с досадной ошибкой переполнения, мы можем скорректировать свое предположение о целых числах в виде «a + 1 больше a, если отсутствует вероятность, при которой a представляет собой очень большое число». И мы действуем исходя из этого, вместо того, чтобы обдумать четкие правила, по которым работает переполнение.

Уточненные предположения – это опыт. Чаще всего они позволяют нам работать быстрее и правильнее. Однако мы можем вообще переместить некоторые вещи, например, правильную обработку malloc, из нашей внутренней категории «простые вещи» во внутреннюю категорию «сложные вещи». И тогда мы действительно можем пойти и уточнить, как они работают.

Читать полностью »

Чтобы машины могли обрабатывать текст на русском и «понимать» его, в NLP используются универсальные языковые модели и трансформеры — BERT, RoBERTa, XLNet и другие — архитектуры от 100 миллионов параметров, обученные на миллиардах слов. Все оригинальные модели появляются обычно для английского, показывают state-of-the-art в какой-нибудь прикладной задаче и только спустя полгода-год появляются и для русского языка, без тюнинга архитектуры.

Люди ломаются на логике, роботы — на всем понемногу. Экзамены по русскому для NLP-моделей - 1

Чтобы корректнее обучать свою модель для русского или другого языка и адаптировать её, хорошо бы иметь какие-то объективные метрики. Их существует не так много, а для нашей локали и вовсе не было. Но мы их сделали, чтобы продолжить развитие русских моделей для общей задачи General Language Understanding.

Мы — это команда AGI NLP Сбербанка, лаборатория Noah’s Ark Huawei и факультет компьютерных наук ВШЭ. Проект Russian SuperGLUE — это набор тестов на «понимание» текста и постоянный лидерборд трансформеров для русского языка.
Читать полностью »

YouTube можно использовать не только для развлечений, но и для обучения чему угодно.

Рекомендации на YouTube очень полезны, так как подсказывают релевантные видео к текущему, но и опасны потому что содержат ещё и в принципе интересные и отвлекающие ролики (не на тему видео).

Chrome расширение для скрытия отвлекающих рекомендации на YouTube - 1

В какой-то момент ты просто устаешь смотреть ролики на определенную тему, и тут тебя ловят отвлекающие рекомендации, ибо YouTube выгоднее привлечь любым другим контентом лишь бы вы провели на нем больше времени. Серфя таким образом, теряем время впустую.

Читать полностью »

Пока весь мир, вместо того, чтобы нарезать салаты готовиться к встрече Нового года, следит за развитием ситуации с nginx, мы решили не усугублять и не готовить серьезную научную статью, не шокировать технологиями наступившего будущего и не грузить очень хитрым алгоритмом. Мы тоже пользуемся nginx и надеемся, что и с его создателями и с ним все будет хорошо. И нам (да и не только нам) важно, чтобы ситуация разрешилась не как подарок Деда Мороза, а как естественный ход событий.
Т — значит творчество - 1
Читать полностью »

Мы уже рассказывали вам об интересных статистиках текстов, делали обзор статей применений автокодировщиков в анализе текстов, удивляли нашими свежими алгоритмами поиска переводных заимствований и парафраза. Я решил продолжить нашу корпоративную традицию и, во-первых, начать статью с «Т», а во-вторых, рассказать:

  • как быстро найти абзац текста среди сотен миллионов статей;
  • во что превращается документ после загрузки в систему Антиплагиат, и что с этим делать дальше;
  • как формируется отчет, который почти никто не смотрит, а стоило бы;
  • как проиндексировать не все, но достаточно.

Так устроен поиск заимствований в Антиплагиате - 1
Читать полностью »

Русскоязычный чат-бот Boltoon: создаем виртуального собеседника - 1

Несколько лет назад было опубликовано интервью, в котором говорят об искусственном интеллекте и, в частности, о чат-ботах. Респондент подчеркивает, что чат-боты не общаются, а имитирует общение.

В них заложено ядро разумных микродиалогов вполне человеческого уровня и построен коммуникативный алгоритм постоянного сведения разговора к этому ядру. Только и всего.

На мой взгляд, в этом что-то есть…

Тем не менее, о чат-ботах много говорят на Хабре. Они могут быть самые разные. Популярностью пользуются боты на базе нейронных сетей прогнозирования, которые генерируют ответ пословно. Это очень интересно, но затратно с точки зрения реализации, особенно для русского языка из-за большого количества словоформ. Мной был выбран другой подход для реализации чат-бота Boltoon.
Читать полностью »

Bash-скрипты: начало
Bash-скрипты, часть 2: циклы
Bash-скрипты, часть 3: параметры и ключи командной строки
Bash-скрипты, часть 4: ввод и вывод
Bash-скрипты, часть 5: сигналы, фоновые задачи, управление сценариями
Bash-скрипты, часть 6: функции и разработка библиотек
Bash-скрипты, часть 7: sed и обработка текстов

Bash-скрипты, часть 8: язык обработки данных awk - 1

В прошлый раз мы говорили о потоковом редакторе sed и рассмотрели немало примеров обработки текста с его помощью. Sed способен решать многие задачи, но есть у него и ограничения. Иногда нужен более совершенный инструмент для обработки данных, нечто вроде языка программирования. Собственно говоря, такой инструмент — awk.
Читать полностью »

Bash-скрипты: начало
Bash-скрипты, часть 2: циклы
Bash-скрипты, часть 3: параметры и ключи командной строки
Bash-скрипты, часть 4: ввод и вывод
Bash-скрипты, часть 5: сигналы, фоновые задачи, управление сценариями
Bash-скрипты, часть 6: функции и разработка библиотек

В прошлый раз мы говорили о функциях в bash-скриптах, в частности, о том, как вызывать их из командной строки. Наша сегодняшняя тема — весьма полезный инструмент для обработки строковых данных — утилита Linux, которая называется sed. Её часто используют для работы с текстами, имеющими вид лог-файлов, конфигурационных и других файлов.

Bash-скрипты, часть 7: sed и обработка текстов - 1
Читать полностью »

Некоторое время назад к нам обратился представитель банка АО «Банк ЦентрКредит» (Казахстан) с интересной задачей. Необходимо было интегрировать в конвейер обработки данных, представляющих из себя текст на естественном языке, дополнительный инструмент обработки. Всех деталей проекта мы раскрывать не можем, так как он находится в сфере безопасности банка и разрабатывается его службой безопасности. В освещении технологических аспектов задачи и способов их реализации заказчик не был против, что собственно мы и хотим сделать в рамках данной статьи.

В целом задача, состояла в извлечении некоторых сущностей из большого массива текстов. Не сильно отличающаяся проблема от классической задачи извлечения именованных сущностей, с одной стороны. Но определения сущностей отличались от обычных и тексты были довольно специфическими, а сроку на решение проблемы было две недели.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js