Рубрика «обработка изображений» - 55

Фильтр анизотропной диффузии Перона и Малика — это сглаживающий цифровые изображения фильтр, ключевая особенность которого состоит в том, что при сглаживании он сохраняет и «усиливает» границы областей на изображении.

В статье я кратко рассмотрю зачем нужен этот фильтр, теорию по нему и как его реализовать алгоритмически, приведу код на языке Fortran и примеры сглаженных изображений.

Сглаживание изображений фильтром анизотропной диффузии Перона и Малика - 1
Крайнее левое изображение — оригинальное, справа от оригинального — фильтрованные с различными параметрами.
Читать полностью »

Всем привет! Хочу с Вами поделиться своим опытом работы с таким SDK как MapXtreme .Net от фирмы Pitney Bowes. Как сказано у них на сайте:

MapInfo MapXtreme for .Net — это комплект разработчика программного обеспечения ГИС в среде Microsoft .Net, позволяющий встраивать картографические и ГИС функции в бизнес-приложения.

Читать полностью »

Содержание

В прошлой части мы уже обсуждали, что такое скрытые переменные, взглянули на их распределение, а также поняли, что из распределения скрытых переменных в обычных автоэнкодерах сложно генерировать новые объекты. Для того чтобы можно было генерировать новые объекты, пространство скрытых переменных (latent variables) должно быть предсказуемым.

Вариационные автоэнкодеры (Variational Autoencoders) — это автоэнкодеры, которые учатся отображать объекты в заданное скрытое пространство и, соответственно, сэмплить из него. Поэтому вариационные автоэнкодеры относят также к семейству генеративных моделей.

Автоэнкодеры в Keras, Часть 3: Вариационные автоэнкодеры (VAE) - 1
Читать полностью »

imageСегодняшние системы с искусственным интеллектом могут разгромить людей-чемпионов в таких сложных играх, как шахматы, го и техасский холдем. В симуляторах полёта они могут сбивать лучших пилотов. Они превосходят людей-докторов в создании точных хирургических стежков и постановке диагнозов рака. Но в некоторых случаях трёхлетний ребёнок легко обставит лучший ИИ в мире: когда соревнование идёт связано с обучением, настолько рутинным, что люди даже не подозревают о нём.

Такая мысль пришла в голову Дэвиду Коксу [David Cox] – нейробиологу из Гарварда, эксперту по ИИ, гордому отцу трёхлетней дочки – когда она, заметив в музее национальной истории длинноногий скелет, показала на него пальцем и сказала: «Верблюд!» Единственная её встреча с верблюдом происходила за несколько месяцев до того, когда отец показывал ей рисованного верблюда в книжке с картинками.
Читать полностью »

Здравствуйте, меня зовут Дмитрий. Здесь я хочу рассказать о том, почему меня не устраивает мышка, и как я пытаюсь ее заменить. Я разрабатываю CAE-программы для инженеров (расчет статики и динамики механических систем), треть рабочего времени я работаю как project manager, а в остальное время я — системный архитектор, разработчик и тестер в своем и в чужих проектах. У меня всегда открыты десять-двадцать окон, между которыми мне приходится постоянно прыгать:Читать полностью »

Об использовании видеокамер с распознаванием символов на низкопроизводительных вычислительных устройствах - 1

Ранее, в статье рассказывалось о разработке метода распознавания, позволяющего осуществлять оптическое распознавание символов из видео «на лету». В качестве доказательства эффективности нового метода использовалась его реализация на устройстве, совершенно для этого не предназначенным — микроконтроллере esp8266. В ходе обсуждения возник вопрос: где можно использовать устройства с распознаванием на борту (считыватель)? Да еще и ценой менее $50. Понятно, что там же где и используются устройства подороже, но хотелось бы обсудить и другие варианты. Надеемся на помощь читателей в этом вопросе. А что видим мы?
Читать полностью »

Оптическое распознавание символов на микроконтроллере - 1

На сегодняшний день оптическое распознавание символов является частью решения таких прикладных задач, как распознавание и оцифровка текстов, распознавание документов, распознавание автомобильных номеров, определение номеров банковских карточек, чтение показаний счетчиков учета, определения номеров домов для создания карт (Google Street View) и т.д.
Распознавание символа означает анализ его изображения с целью получения некоторого набора признаков для сравнения их с признаками класса [ 1 ]. Выбор такого набора и способы его определения отличают разные методы распознавания, но для большинства из них необходима одномоментная информация обо всех пикселях изображения.
Последнее обстоятельство и достаточно большой объем вычислений делают невозможным использования маломощных вычислительных устройств (микроконтроллеров) для оптического распознавания символов. «Да и зачем?» — воскликнет информированный читатель, «мощности вычислительных устройств постоянно растут, а их цена падает!»[2, 3]. Допустим, что ответ будет такой: просто интересно, возможно ли упростить метод распознавания до такой степени, чтобы можно было бы использовать микроконтроллер?Читать полностью »

Хабр, нам тут пришла одна идея… В настоящий момент у нас возникло некое межсезонье между разными образовательными программами. Мы подумали, зачем нашей инфраструктуре зря простаивать, когда есть люди, которые могли бы на этой инфраструктуре что-то классное сделать.

Мы решили сделать небольшой вклад в развитие deep learning в России и выделить 3 виртуальных сервера с GPU тем, кто что-то делает в этой области. 2 виртуалки мы решили отдать нашим выпускникам, а 1 виртуалку дать в пользование кому-то «со стороны».

image

Читать полностью »

image

Типичный день в нейрокурятнике — куры часто еще и крутятся в гнезде

Чтобы довести, наконец, проект нейрокурятника до своего логического завершения, нужно произвести на свет работающую модель и задеплоить ее на продакшен, да еще и так, чтобы соблюдался ряд условий:

  • Точность предсказаний не менее 70-90%;
  • Raspberry pi в самом курятнике в идеале мог бы определять принадлежности фотографий к классам;
  • Нужно как минимум научиться отличать всех кур друг от друга. Программа максимум — также научиться считать яйца;

В данной статье мы расскажем что же в итоге у нас получилось, какие модели мы попробовали и какие занятные вещи нам попались на дороге.

Статьи про нейрокурятник

Заголовок спойлера

  1. Вступление про обучение себя нейросетям
  2. Железо, софт и конфиг для наблюдения за курами
  3. Бот, который постит события из жизни кур — без нейросети
  4. Разметка датасетов
  5. Работающая модель для распознавания кур в курятнике
  6. Итог — работающий бот, распознающий кур в курятнике

Читать полностью »

В последнее время всё большую популярность обретают различные интерактивные способы завлечь аудиторию и привлечь к себе больше внимания. Тут и боты для социальных сетей и мессенджеров, и другие решения, придающие «уникальности».
Среди них можно выделить и динамические обложки для сообществ, официально поддерживать которые ВКонтакте начали в марте.
Почему я решил написать эту небольшую статью? Хотя ажиотаж вокруг этой темы и спал, всё равно она остаётся довольно популярной, находятся как «клиенты», готовые платить очень большие деньги, так и желающие научиться это делать самому.
Я работал с одной «студией», которая берет шестизначные суммы за эту работу, при этом кидая своих разработчиков и мелких клиентов.
Так вот, чтобы в этой сфере не было монополии, и все увидели, насколько легко это делается, я и решил написать статью.

Создаём динамическую обложку ВКонтакте - 1
На примере моего пустого сообщества-песочницы
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js