Данная статья является кратким обзором возможностей dnn — модуля OpenCV, предназначенного для работы с нейросетями. Если вам интересно, что это такое, что оно умеет и как быстро работает, добро пожаловать под кат.
Читать полностью »
Данная статья является кратким обзором возможностей dnn — модуля OpenCV, предназначенного для работы с нейросетями. Если вам интересно, что это такое, что оно умеет и как быстро работает, добро пожаловать под кат.
Читать полностью »
Освоить создание графических шейдеров — это значит взять под свой контроль всю мощь видепроцессора с его тысячами параллельно работающих ядер. При таком способе программирования требуется другой образ мышления, но раскрытие его потенциала стоит потраченных усилий.
Практически в любой современной графической симуляции используется код, написанный для видеопроцессора: от реалистичных эффектов освещения в высокотехнологичных AAA-играх до двухмерных эффектов постпроцессинга и симуляции жидкостей.
Сцена из Minecraft, до и после добавления нескольких шейдеров.
Иногда программирование шейдеров представляется загадочной чёрной магией и его часто понимают неправильно. Существует множество примеров кода, демонстрирующих создание невероятных эффектов, но в которых практически нет объяснений. В своём руководстве я хочу восполнить этот пробел. Я сосредоточусь в основном на базовых принципах создания и понимания кода шейдеров, чтобы вы смогли с лёгкостью настраивать, сочетать или писать свои собственные шейдеры с нуля!
Читать полностью »
Данная статья является переводом статьи «Automatic text recognition in digital videos» за авторством Райнера Линхарта и Франка Штубера, Университет Маннхайма, Германия.
Мы занимаемся разработкой алгоритмов для автоматической сегментации символов в фильмах, которые извлекают текст из предисловия, титров и заключения. Наши алгоритмы используют стандартные символы текста в видео, чтобы повысить качество сегментации и, как следствие, эффективность распознавания. Как результат мы имеем отдельные символы из кадров. Их можно проанализировать с помощью любого ПО OCR. Результаты распознавания нескольких экземпляров одного и того же символа во всех последующих кадрах объединяются для повышения качества распознавания и для вычисления конечного результата. Мы протестировали наши алгоритмы в серии экспериментов с видеоклипами, записанными с телевизора, и достигли хороших результатов сегментации.
Читать полностью »
Сегментация изображений является задачей разбиения цифрового изображения на одну или несколько областей, представляющих интерес. Это фундаментальная проблема в области компьютерного зрения, которая решается многими различными способами, каждый из которых обладает своими преимуществами и недостатками.
В этой статье я кратко рассмотрю понятие метода фиксации уровня и неявно заданных динамических поверхностей (level set method). Также рассмотрю роль этого метода в бинарной сегментации с введением и определением математических конструкций, таких как SDT (Signed Distance Transforms), маркированной карты расстояний.
Слева — исходное изображение, справа — сегментированное
Читать полностью »
В этом посте изложены две недавно опубликованные идеи, как ускорить процесс обучения глубоких нейронных сетей при увеличении точности предсказания. Предложенные (разными авторами) способы ортогональны друг другу, и могут использоваться совместно и по отдельности. Предложенные здесь способы просты для понимания и реализации. Собственно, ссылки на оригиналы публикаций:
Это статья рассчитана на новичков, которые только начинают осваивать методы обработки изображений. Сама я часто сталкиваюсь с отсутствием легких примеров, особенно на русском языке, поэтому надеюсь данный материал окажется полезным.
Как-то встала передо мной следующая задача. У меня было много фотографий болгарских перцев и необходимо было отделить растение от фона. На примере этой задачи я покажу один из самых примитивных способов как это можно сделать при помощи openCV 2.4.
Суть задачи: закрасить белым все что не является растением.
Исходная фотография (слева) и то что должно получиться (справа).
Читать полностью »
В позапрошлой части мы создали CVAE автоэнкодер, декодер которого умеет генерировать цифру заданного лейбла, мы также попробовали создавать картинки цифр других лейблов в стиле заданной картинки. Получилось довольно хорошо, однако цифры генерировались смазанными.
В прошлой части мы изучили, как работают GAN’ы, получив довольно четкие изображения цифр, однако пропала возможность кодирования и переноса стиля.
В этой части попробуем взять лучшее от обоих подходов путем совмещения вариационных автоэнкодеров (VAE) и генеративных состязающихся сетей (GAN).
Подход, который будет описан далее, основан на статье [Autoencoding beyond pixels using a learned similarity metric, Larsen et al, 2016].
Иллюстрация из [1]
Читать полностью »
(Из-за вчерашнего бага с перезалитыми картинками на хабрасторейдж, случившегося не по моей вине, вчера был вынужден убрать эту статью сразу после публикации. Выкладываю заново.)
При всех преимуществах вариационных автоэнкодеров VAE, которыми мы занимались в предыдущих постах, они обладают одним существенным недостатком: из-за плохого способа сравнения оригинальных и восстановленных объектов, сгенерированные ими объекты хоть и похожи на объекты из обучающей выборки, но легко от них отличимы (например, размыты).
Этот недостаток в куда меньшей степени проявляется у другого подхода, а именно у генеративных состязающихся сетей — GAN’ов.
Формально GAN’ы, конечно, не относятся к автоэнкодерам, однако между ними и вариационными автоэнкодерами есть сходства, они также пригодятся для следующей части. Так что не будет лишним с ними тоже познакомиться.
GAN’ы впервые были предложены в статье [1, Generative Adversarial Nets, Goodfellow et al, 2014] и сейчас очень активно исследуются. Наиболее state-of-the-art генеративные модели так или иначе используют adversarial.
Схема GAN:
Сериал HBO «Кремниевая долина» выпустил настоящее приложение ИИ, которое распознаёт хотдоги и не-хотдоги, как приложение в четвёртом эпизоде четвёртогого сезона (приложение сейчас доступно для Android, а также для iOS!)
Чтобы добиться этого, мы разработали специальную нейронную архитектуру, которая работает непосредственно на вашем телефоне, и обучили её с помощью TensorFlow, Keras и Nvidia GPU.
Читать полностью »
В прошлой части мы познакомились с вариационными автоэнкодерами (VAE), реализовали такой на keras, а также поняли, как с его помощью генерировать изображения. Получившаяся модель, однако, обладала некоторыми недостатками:
В этой части мы посмотрим, как можно лишь совсем немного усложнив модель преодолеть обе эти проблемы, и заодно получим возможность генерировать картинки новых цифр в стиле другой цифры – это, наверное, самая интересная фича будущей модели.