Рубрика «обработка изображений» - 48

Привет! Сегодня мы расскажем о том, как нашей команде из Smart Engines удалось победить на международном конкурсе по бинаризации документов DIBCO17, проводимом в рамках конференции ICDAR. Данный конкурс проводится регулярно и уже имеет солидную историю (он проводится 9 лет), за время которой было предложено множество невероятно интересных и безумных (в хорошем смысле) алгоритмов бинаризации. Несмотря на то, что в своих проектах по распознаванию документов при помощи мобильных устройств мы по возможности не используем подобные алгоритмы, команде показалось, что нам есть что предложить мировому сообществу, и в этом году мы впервые приняли решение участвовать в конкурсе.

История победы на международном соревновании по распознаванию документов команды компании SmartEngines - 1Читать полностью »

Первая леди интернета - 1

Фото девушки выше, я думаю, знакомо многим пользователям мировой паутины, а особенно тем кто сталкивался с цифровой обработкой изображений. Эту картинку часто используют для оценки алгоритмов обработки изображений. На самом деле подлинный интерес вызывает не сама красотка на картинке, а история ее появления. Под катом история жизни “первой леди интернета”.
Читать полностью »

Рубрика «Читаем статьи за вас». Октябрь — Ноябрь 2017 - 1

Привет! По традиции, представляем вашему вниманию дюжину рецензий на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество ODS!

Статьи выбираются либо из личного интереса, либо из-за близости к проходящим сейчас соревнованиям. Напоминаем, что описания статей даются без изменений и именно в том виде, в котором авторы запостили их в канал #article_essence. Если вы хотите предложить свою статью или у вас есть какие-то пожелания — просто напишите в комментариях и мы постараемся всё учесть в дальнейшем.

Статьи на сегодня:

Читать полностью »

Сверточная сеть на python. Часть 1. Определение основных параметров модели - 1

Несмотря на то, что можно найти не одну статью, объясняющую принцип метода обратного распространения ошибки в сверточных сетях (раз, два, три, четыре, пять и даже дающих “интуитивное” понимание — шесть), мне, тем не менее, никак не удавалось полностью понять эту тему. Кажется, что авторы недостаточно внимания уделяют обычным примерам либо же опускают какие-то хорошо понятные им, но не очевидные другим особенности, и весь материал по этой причине становится неподъемным. Мне хотелось разложить все по полочкам для самого себя и в итоге конспекты вылились в статью. Я постарался исключить все недостатки существующих объяснений и надеюсь, что эта статья ни у кого не вызовет вопросов или недопониманий. И, может, следующий новичок, который, также как и я, захочет во всем разобраться, потратит уже меньше времени.
Читать полностью »

image

tl;dr

  • GIF — это круто, но в плане качества и производительности они ужасны.
  • Замена GIF на video хорошая идея, но есть недостатки: они не подгружаются предварительно, используют range запросы.
  • Сегодня вы можете использовать img src =".mp4" в Safari Technology Preview.
  • Предварительные результаты показывают, что mp4s в тегах отображаются в 20 раз быстрее и декодируются в 7 раз быстрее, чем GIF-эквивалент — в дополнение к тому, что размер файла равен 1/14!
  • Фоновые CSS-видео и адаптивные видео теперь могут быть «вещью».
  • Наконец, синемаграфы будут без недостатков GIF.
  • Теперь мы ждем, когда другие браузеры пойдут следом: этот пост весит — 46 МБ на Chrome, и всего 2 МБ в Safari TP.

Особая благодарность: Эрику Портису, Джеку Ноблу, Джону Дэвису, Дорону Шерману и Йоаву Вайсу.
Читать полностью »

Нейросеть для определения лиц, встроенная в смартфон - 1Apple начала использовать глубинное обучение для определения лиц начиная с iOS 10. С выпуском фреймворка Vision разработчики теперь могут использовать в своих приложениях эту технологию и многие другие алгоритмы машинного зрения. При разработке фреймворка пришлось преодолеть значительные проблемы, чтобы сохранить приватность пользователей и эффективно работать на железе мобильного устройства. В статье обсуждаются эти проблемы и описывается, как работает алгоритм.

Введение

Впервые определение лиц в публичных API появилось во фреймворке Core Image через класс CIDetector. Эти API работали и в собственных приложениях Apple, таких как Photos. Самая первая версия CIDetector использовала для определения метод на базе алгоритма Виолы — Джонса [1]. Последовательные улучшения CIDetector были основаны на достижениях традиционного машинного зрения.

С появлением глубинного обучения и его применения к проблемам машинного зрения точность систем определения лиц сделала значительный шаг вперёд. Нам пришлось полностью переосмыслить наш подход, чтобы извлечь выгоду из этой смены парадигмы. По сравнению с традиционным машинным зрением модели в глубинном обучении требуют на порядок больше памяти, намного больше дискового пространства и больше вычислительных ресурсов.
Читать полностью »

Капсульные сети от Хинтона - 1
27 октября 2017 года появилась статья доктора Джофри Хинтона с соавторами из Google Brain. Хинтон — более чем известный ученый в области машинного обучения. Он в свое время разработал математику обратного распространения ошибок, был научным руководителем Яна Лекуна — автора архитектуры сверточных сетей.
Хоть презентация была достаточно скромная, корректно говорить о революционном изменении подхода к искусственным нейронным сетям (ИНС). Назвали новый подход «капсульные сети». Пока в российском сегменте интернета мало информации о них, поэтому восполню этот пробел.
Читать полностью »

Про распознавание номеров мы рассказываем на Хабре давным давно. Надеюсь даже интересно. Похоже настало время рассказать как это применяется, зачем это вообще нужно, куда это можно запихнуть. А самое главное — как это изменяется в последние годы с приходом новых алгоритмов машинного зрения.
Можно ли запихнуть распознавание номеров в любой тамагочи? - 1
Читать полностью »

В интернетах не прекращается хайп вокруг чат-ботов — в частности Telegram — благодаря шуму в СМИ, неоспоримых достоинствах платформы, политике продвижения, средствам разработки и т.д.

Биороботы нашего времени — избавляемся от рутины вместе с Telegram. Реальный кейс без фантазий - 1 Смотришь новости: ну жизни нет без чат-ботов!
Да если их не будет — поезда с рельс сойдут, упадут самолеты, погибнут люди от тоски, когда не смогут найти картинки с котиками.

Но давайте положим руку на сердце: когда последний раз вы что-то заказывали в интернет магазине через чат-бот?

Кто все эти люди, которые заказывают разработку ботов для своих магазинов?

Типичный чат-бот магазина Vasya Limited:
>> автоматизирует поток водопад заявок из 5 человек в день.
>> сливает 4 из 5 заявок, кровью добытых через Яндекс-Директ
>> если повезет — человек найдет номер телефона и позвонит
>> но вероятней всего «Эээ — куда жать?»- закроет и уйдет гуглить дальше.

Чем занят владелец, когда продажи «автоматизированы»:
>> вносит заказы в excel таблицу
>> заполняет почтовые бланки на посылках
>> стоит в очереди на почте с кучей посылок (каждый день!)
>> вносит трек номера в excel таблицу, затем рассылает клиентам

Может хватит на ровном месте встраивать «технологии» туда, где действительно нужен человек, в то время как люди загружены рутиной для роботов?
Читать полностью »

Как Discord каждый день изменяет размер 150 млн картинок с помощью Go и C++ - 1

Хотя Discord — это приложение для голосового и текстового чата, каждый день через него проходит более ста миллионов изображений. Конечно, мы бы хотели, чтобы задача была простой: просто перенаправить картинки вашим друзьям по всем каналам. Но в реальности доставка этих изображений создаёт довольно большие технические проблемы. Прямая ссылка на картинки выдаст хосту с картинкой IP-адреса пользователей, а большие изображения расходуют много трафика. Чтобы избежать этих проблем, требуется промежуточный сервис, который будет получать изображения для пользователей и изменять их размер для экономии трафика.

Встречайте Image Proxy

Для выполнения этой работы мы создали сервис Python и креативно назвали его Image Proxy. Он загружает картинки с удалённых URL, а затем выполняет ресурсоёмкую задачу по ресайзингу с помощью пакета pillow-simd. Этот пакет работает удивительно быстро, используя где только возможно для ускорения ресайзинга инструкции x86 SSE. Image Proxy будет получать HTTP-запрос, содержащий URL, чтобы загрузить, изменить размер и, наконец, выдать окончательное изображение.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js