Рубрика «обработка изображений» - 45

Применяем Deep Watershed Transform в соревновании Kaggle Data Science Bowl 2018

Представляем вам перевод статьи по ссылке и оригинальный докеризированный код. Данное решение позволяет попасть примерно в топ-100 на приватном лидерборде на втором этапе конкурса среди общего числа участников в районе нескольких тысяч, используя только одну модель на одном фолде без ансамблей и без дополнительного пост-процессинга. С учетом нестабильности целевой метрики на соревновании, я полагаю, что добавление нескольких описанных ниже фишек в принципе может также сильно улучшить и этот результат, если вы захотите использовать подобное решение для своих задач.

Применяем Deep Watershed Transform в соревновании Kaggle Data Science Bowl 2018 - 1
описание пайплайна решения

Читать полностью »

Существует множество способов удалить фон с изображения какого-либо объекта, сделав его прозрачным (в графических редакторах, специальных сервисах). Но иногда может возникнуть необходимость удаления фона у множества фотографий с минимальным участием человека.

Хочу поделиться способом, основанном на создании маски прозрачности с помощью оператора Собеля и некоторых других преобразований. Основная идея совершенно не нова, но применение некоторых дополнительных техник в правильном порядке позволило улучшить результаты, о чем и будет эта заметка.

Простой фильтр для автоматического удаления фона с изображений - 1

Реализация стала возможной благодаря OpenCV и C# обертке OpenCVSharp.
Читать полностью »

Добрый день. Я разработчик с более чем 10-летним стажем. Для того, чтобы оценить качество исходных кодов сайта, не без доли самоиронии, я создал небольшой чек-лист. Сегодня я поговорю о важном для меня пункте — изображения на сайтах. Я умышленно опустил конкретную технологию, потому что эта проблема встречалась и встречается повсеместно, я буду очень признателен, если в комментариях вы раскроете свои подходы с использованием вашего стека технологий, в конечном итоге мы все очень похожи.

Изменение размеров изображений на сайте - 1
Читать полностью »

Рубрика «Читаем статьи за вас». Февраль — Март 2018 - 1

Привет! Продолжаем публиковать рецензии на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество!

Читать полностью »

Если пять лет назад нейронная сеть считалась «тяжеловесным» алгоритмом, требующим железа, специально предназначенного для высоконагруженных вычислений, то сегодня уже никого не удивить глубокими сетями, работающими прямо на мобильном телефоне.
MobileNet: меньше, быстрее, точнее - 1
В наши дни сети распознают ваше лицо, чтобы разблокировать телефон, стилизуют фотографии под известных художников и определяют, есть ли в кадре хот-дог.

В этой статье мы поговорим о MobileNet, передовой архитектуре сверточной сети, позволяющей делать всё это и намного больше.
Читать полностью »

Рубрика «Читаем статьи за вас». Декабрь 2017 — Январь 2018 - 1

Привет! Продолжаем публиковать рецензии на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество!

Читать полностью »

image

Вы когда-нибудь собирали театральные программки? Если да, то, наверное, в вашей коллекции их десятки, а может, наберется и сотня. А теперь представьте, что в вашем распоряжении 120 тысяч программок, 48 тысяч афиш и 100 тысяч исторических фотографий. Столько бумажных документов сохранил с середины XIX века Большой театр. Самые древние и ценные из них уже пожелтели и стали ветхими, а на поиск информации в театральном архиве уходили часы. Чтобы сохранить эти сокровища, сотрудники театрального музея начали вручную переводить документы в электронный вид, но оказалось, что на это могут уйти годы.

Поэтому в сентябре 2016 года вместе с Большим театром и при активной поддержке Феклы Толстой, праправнучки Льва Николаевича Толстого, мы запустили краудсорсинговый проект по оцифровке истории главного театра страны. В этом посте мы расскажем о подробностях первого этапа проекта и о его технических деталях: как мы оцифровывали уникальные документы с помощью ABBYY FineReader и как волонтеры помогали проверять результаты распознавания. Читать полностью »

Smart Engines и Sailfish OS

Всем привет! Как вы уже знаете по нашим статьям, мы в Smart Engines занимаемся распознаванием, причем распознавать мы стараемся на чем угодно и в любых условиях. Мы поддерживаем все популярные операционные системы: iOS, Android, Windows, Linux, MacOS, Solaris. Поддерживаем мы и отечественного производителя: Эльбрус и AstraLinux. Наши алгоритмы оптимизированы под ARMv7-v8, AArch64, x86, x86_64, SPARC, E2K, MIPS.

Поэтому, когда мы увидели нарастающую популярность российской операционной системы Sailfish Mobile OS RUS, мы не смогли обойти ее стороной. Sailfish Mobile OS RUS — это POSIX-совместимая операционная система для мобильных устройств, развиваемая отечественной компанией «Открытая Мобильная Платформа» для решения задач корпоративных пользователей и государственных учреждений. По состоянию на февраль 2018 года является единственной мобильной операционной системой, включенной в реестр Отечественного ПО и прошедшей сертификацию ФСБ по классу АК1/КС1.

В этой статье мы расскажем о своем опыте портирования нашей библиотеки распознавания Smart IDReader (технология Hieroglyph) на Sailfish OS. В ней будет код, ссылки и видео. Мы хотим, чтобы эта статья была технически информативной и полезной в качестве общей инструкции для тех, кто портирует С++ приложения на Sailfish OS.

Читать полностью »

Сегодня замечательный день (if you know what I mean), чтобы анонсировать нашу новую программу — Специалист по разметке данных.

На текущий момент в сфере искусственного интеллекта сложилась такая ситуация, при которой для обучения сильной нейронной сети нужны несколько компонентов: железо, софт и, непосредственно, данные. Много данных.

Железо, в общем-то, доступно каждому через облака. Да, оно может быть недешевым, но GPU-инстансы на EC2 вполне по карману большинству исследователей. Софт опенсорсный, большинство фреймворков можно скачать себе куда-то и работать с ними. Некоторые сложнее, некоторые проще. Но порог для входа вполне приемлемый. Остается только последний компонент — это данные. И вот здесь и возникает загвоздка.

Deep learning требует действительно больших данных: сотни тысяч–миллионы объектов. Если вы хотите заниматься, например, задачей классификации изображений, то вам, помимо самих данных, нужно передать нейронке информацию, к какому классу относится тот или иной объект. Если у вас задача связана еще и с сегментацией изображения, то получение хорошего датасета — это уже фантастически сложно. Представьте, что вам нужно на каждом изображении выделить границы каждого объекта.

Специалист по разметке данных - 1

В этом посте хочется сделать обзор тех инструментов (коммерческих и бесплатных), которые пытаются облегчить жизнь этих прекрасных людей — разметчиков данных.
Читать полностью »

Доброго утра Хабру. Читал вчера статью о хэш-стеганографии через социальные сети, и пришла мне в голову мысль сделать что-то более оптимальное в плане объёма выходных данных. Получилось что-то более-менее работоспособное и даже оптимизированное (в отличие от proof-of-concept romabibi), поэтому, как и обещал, пишу статью.

Что ж, поздороваюсь с вами ещё раз: Стойкое шифрование данных в PNG - 1, и добро пожаловать под кат.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js