Рубрика «обработка изображений» - 44

Многие продукты нашей компании работают с изображениями. Некоторое время назад мы решили добавить в такие сервисы «умный» поиск по фотографиям, их теггирование. Такая функциональность будет входить в Computer Vision API для дальнейшего использования в продуктах компании. Одним из важных способов теггирования изображений является теггирование по сценам, когда в результате мы получаем что-то такое:

Распознавание сцен на изображениях с помощью глубоких свёрточных нейронных сетей - 1
Читать полностью »

Сегодня, хочу рассказать об интересном подходе по улучшению качества изображения. Официальное название подхода Super Resolution. Улучшение качества изображения программными методами известно с начала появления цифровых снимков, но в последние 3 года произошёл качественный скачок, вызванный использованием нейронных сетей.

Улучшение качества изображения с помощью нейронной сети - 1

Пример улучшения качества изображения с использованием технологии Super Resolution.
Читать полностью »

Последние несколько лет в развитии глубоких нейронных сетей происходит настоящая революция: возникают новые архитектуры, совершенствуются фреймворки для разработчиков, а железо для экспериментов можно получить совершенно бесплатно — например, в рамках проекта Google colaboratory. Всем, кому интересно как применить предобученные модели из репозитория Tensorflow Object Detection API к решению своей задачи, используя мощности Colaboratory — добро пожаловать под кат.
Читать полностью »

FontCode: новый способ стеганографии через форму букв - 1
Рис. 1. Незначительное изменение глифа (формы конкретной литеры) кодирует цифровую информацию за счёт двухмерной матрицы вариантов начертания. Каждая точка в двухмерной координатной сетке генерирует соответствующий уникальный глиф

Специалисты по стеганографии придумали новый способ прятать шифровки в открытом канале. В данном случае — в открытом тексте. По мнению изобретателей, кроме естественного применения в разведке эту технологию можно использовать для скрытого внедрения метаданных, таких как водяные знаки.

Недавно на Хабре рассказывалось про фингерпринтинг текста непечатаемыми символами. Новая техника FontCode более изощрённая, но по сути похожа. И здесь обнаружить скрытое сообщение не так просто, даже сложнее, чем непечатаемые пробелы. В этом тексте никаких невидимых символов нет, а слегка изменённую форму букв сложно заметить на глаз и уж точно невозможно расшифровать, если вы не знаете принцип кодирования/декодирования.
Читать полностью »

Введение

Современный мир трудно представить без видеокамер. Они настолько плотно обосновались в нашей жизни, что стали ее неотъемлемой частью, хотим мы того или нет. Смартфоны, компьютеры, охранные системы и т.д. Список сфер применения можно продолжать долго, но в конечном счете цель преследуется одна — построение изображения исходя из световой информации, поступающей от окружающего мира на фоточувствительный датчик.
Читать полностью »

OpenVINO Toolkit — чтобы смотреть на мир незатуманенным взглядом - 1

Буквально вчера увидела свет новая версия Open Visual Inference & Neural Network Optimization (OpenVINO) toolkit (ранее Intel Computer Vision SDK) — набора библиотек, средств оптимизации и информационных ресурсов для разработки софта, использующего машинное зрение и Deep Learning. Цель OpenVINO — ускорить процесс создания систем компьютерного зрения, предоставляя программистам интегрированную среду разработки, а также оптимизировать код этих продуктов, требующий больших вычислительных затрат, под разнообразные аппаратные платформы (CPU, GPU, FPGA) Intel.

Под катом — полный список компонентов OpenVINO Toolkit, перечень совместимого железа и полезные ссылки.
Читать полностью »

Выявление преступных группировок, ворующих из магазинов – Data Mining - 1

Группа из 3–4 лиц по предварительному сговору способна вынести из большого магазина типа «Ашана» или «Перекрёстка» товара до 400 тысяч рублей в месяц. Если обычные шоплифтеры просто мирно воруют колбасу, протаскивая её под одеждой или ещё где, то эти парни оказываются в разы наглее и деструктивнее.

Разница вот в чём. Во-первых, они имеют возможность запутать всю систему наблюдения, выстроенную для поиска одиночных воров. Самая простая связка — один берёт товар, передаёт незаметно другому, тот относит в слепую зону камер, там его берёт третий.
Во-вторых, они воруют не на предел административки в 1000 рублей, а сразу по максимуму для перепродажи.
В-третьих, при попытке их остановить и вызвать полицию они применяют силовые меры к охраннику и уходят. Силовые меры — это от банального оттеснения охранников от подозреваемого до угроз оружием.

К нам обратилось ЧОП, которое попросило сделать видеоаналитику по тем, кого они уже знают. Чтобы при входе в магазин такого товарища сразу вызывалась полиция и их брали уже тёпленькими.
Читать полностью »

Привет!

Сегодня я расскажу вам про один из методов решения задачи pose estimation. Задача состоит в детектировании частей тела на фотографиях, а метод называется DeepPose. Этот алгоритм был предложен ребятами из гугла еще в 2014 году. Казалось бы, не так давно, но не для области глубокого обучения. С тех пор появилось много новых и более продвинутых решений, но для полного понимания необходимо знакомство с истоками.

Детектирование частей тела с помощью глубоких нейронных сетей - 1

Читать полностью »

Существует куча софта, который позволяет пользователям применять различные цветовые фильтры к своим фотография. Пионером в этом деле был Инстаграм и иногда хочется сделать в своем приложении уже знакомые пользователям фильтры. И я хочу представить набор утилит, который позволит в полу-автоматическом режиме очень точно воспроизводить цветовые фильтры из других приложений в своём приложении.

https://github.com/homm/color-filters-reconstruction

Людям нравятся фильтры из Инстаграма. Они пытаются воспроизвести их снова и снова. И снова и снова. И снова и снова. Проблема с этими попытками в том, что люди пытаются вручную подобрать цветовую коррекцию, которая будет хоть как-то похожа на то, что делают оригинальные фильтры. Для меня же было намного более интересно попробовать воспроизвести фильтры основываясь на более надежных методах и математике. И похоже, что это единственная попытка действительно точного воссоздания цветовых фильтров.

Для примера, одно из следующих изображений было получено с применением фильтра Clarendon на оригинальном изображении в самом Инстаграме, а другое с помощью наложения восстановленного фильтра. Попробуйте угадать, какое восстановлено.

Правдоподобная реконструкция Инстаграм-подобных фильтров - 1 Правдоподобная реконструкция Инстаграм-подобных фильтров - 2

Для сравнения, это результат применения того же фильтра из коммерческого набора «Инстаграм-подобных фильтров», который вы без труда сможете нагуглить:

Правдоподобная реконструкция Инстаграм-подобных фильтров - 3Читать полностью »

Этот пост относится к моей статье о вычислении точек на кривых Безье с помощью линейной интерполяции текстур. Расширенный метод распространяется на поверхности Безье и (многомерные) многочлены.

Первоначальное наблюдение состояло в том, что если произвести выборку по диагонали текстуры 2×2, то в качестве выходных данных получатся точки на квадратичной кривой Безье, а опорные точки кривой являются значениями пикселей, как на изображении ниже. Когда я говорю, что вы получаете квадратичную кривую Безье, то выражаюсь буквально и точно. Происходящее можно представить так: интерполяция текстуры буквально выполняет алгоритм де Кастельжо. (Примечание: если в примере ниже значения “B” не равны, то вторая опорная точка будет средним из этих двух значений: расширение злоупотребляет этим, чтобы аппроксимировать больше кривых в меньшее количество пикселей).

Прогулка между пикселями - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js