Рубрика «обработка изображений» - 38

Системы машинного зрения могут распознавать лица на одном уровне с людьми и даже создавать реалистичные искусственные лица. Но исследователи обнаружили, что эти системы не могут распознать оптические иллюзии, а значит, и создать новые.

Нейросети не понимают, что такое оптические иллюзии - 1

Зрение человека – удивительный аппарат. Хотя оно развивалось в определённой окружающей среде миллионы лет, оно способно на такие задачи, которые никогда не попадались ранним зрительным системам. Хорошим примером будет чтение, или определение искусственных объектов – машин, самолётов, дорожных знаков, и т.п.

Но у зрительной системы есть хорошо известный набор недостатков, воспринимаемых нами, как оптические иллюзии. Исследователи определили уже много вариантов, в которых эти иллюзии заставляют людей неправильно оценивать цвет, размер, взаимное расположение и движение.

Сами по себе иллюзии интересны тем, что дают представление о природе зрительной системы и восприятия. Поэтому будет очень полезно придумать способ находить новые иллюзии, которые помогут изучить ограничения этой системы.
Читать полностью »

image

«Блюр» в простонародье — эффект размытия, в цифровой обработке изображений. Бывает очень эффектен и сам по себе, и как составляющее анимаций интерфейса, или более сложных производных эффектов (bloom/focusBlur/motionBlur). При всем этом честный блюр в лоб довольно медленен. И часто реализации встроенные в целевую платформу оставляют желать лучшего. То скорость печальна, то артефакты режут глаза. Ситуация рождает множество компромиссных реализаций, лучше или хуже подходящих для определенных условий. Оригинальная реализация с хорошим качеством достоверности и высочайшей скоростью, при этом нижайшей зависимостью от аппаратной части ждет вас под катом. Приятного аппетита!
Читать полностью »

image

Можно ли блюрить Лапласом вместо Гаусса, во сколько раз это быстрее, и стоит ли того потеря 1/32 точности.
Читать полностью »

Сгенерированная нейросетью картина ушла с молотка за $432 500 - 1

«Эдмонд де Белами, из семьи де Белами. Состязательная нейронная сеть, печать на холсте, 2018. Подписана функцией потерь модели GAN чернилами издателем, из серии одиннадцати уникальных изображений, опубликованных Obvious Art, Париж, в оригинальной позолоченной деревянной раме». — таково описание лота 363, который вчера продан на аукционе «Сотбис» за $432 500.
Читать полностью »

Сейчас очень популярны курсы по созданию автопилотов для машин. Вот эта нано-степень от Udacity — самый наверное известный вариант.

Много людей по нему учатся и выкладывают свои решения. Я тоже не смог пройти мимо и увлекся.

Разница в том, что курс предполагает разработку алгоритма на основе предоставляемых данных, а я делал все для своего робота.
Читать полностью »

Преобразование цветовой температуры (K) в RGB: алгоритм и пример кода - 1

Если вы не знаете, что такое цветовая температура, начните отсюда.

Работая над инструментом «Цветовая температура» для PhotoDemon, я целый вечер пытался определить простой и понятный алгоритм преобразования между значениями температуры (в Кельвинах) и RGB. Я думал, что такой алгоритм будет просто найти, ведь во многих фоторедакторах есть инструменты для коррекции цветовой температуры, а в каждой современной камере, включая смартфоны, есть регулировка баланса белого на основе условий освещения.
Читать полностью »

Тема сегодняшнего разговора — чему же научился Python за все годы своего существования в работе с изображениями. И действительно, кроме старичков родом из 1990 года ImageMagick и GraphicsMagick, есть современные эффективные библиотеки. Например, Pillow и более производительная Pillow-SIMD. Их активный разработчик Александр Карпинский (homm) на MoscowPython сравнил разные библиотеки для работы с изображениями на Python, представил бенчмарки и рассказал о неочевидных особенностях, которых всегда хватает. В этой статье расшифровка доклада, который поможет вам выбрать библиотеку под свое приложение, и сделать так, чтобы она работало максимально эффективно.

О спикере: Александр Карпинский работает в компании Uploadcare и занимается сервисом быстрой модификации изображений на лету. Участвует в разработке Pillow — популярной библиотеки для работы с изображениями на Python, развивает собственный форк этой библиотеки — Pillow-SIMD, который использует современные инструкции процессоров для наибольшей производительности.
Читать полностью »

Суть задачи

В процессе медицинской диагностики может возникнуть необходимость исследовать сосуды пациента. Такое исследование называется ангиографией. С появлением томографов в дополнение к классической ангиографии появились методы МРТ и КТ ангиографии, которые в отличие от традиционной ангиографии, дающей только плоскую картинку в одной проекции, позволяют получить полное трехмерное представление сосудов. Для проведения таких исследований пациенту в кровь вводится контраст — специальное вещество, делающее сосуды на снимках более яркими. В зависимости от предполагаемого диагноза, врач или оценивает общую картину, или пытается найти конкретные участки сосудов, в которых возникли проблемы. Если участок сосуда сужен и пропускает меньше крови, чем должен, то это место называется стенозом.

Решение проблемы обнаружения центральной линии сосуда - 1

Одна из задач врача — найти стенозы и оценить, насколько они опасны. Задача же разработчика, как обычно, облегчить работу конечного пользователя. Для этого необходимо построить полную 3D модель стенок сосуда и провести их первичный анализ. Это является большой и интересной задачей, однако, в её основе лежит более простая и известная проблема — построение центральной линии сосуда.
Читать полностью »

Отчёт стартапа, занимающегося приложением для улучшения фотосъёмки с iPhone

iPhone XS: почему это совершенно новая камера - 1

iPhone XS против iPhone X – изменения в камере на уровне железа

В последней версии нашего приложения мы сделали новую функцию, выводящую подробную информацию о том, на что способна камера вашего телефона. Пользователи, получившие раньше других доступ к iPhone XS, поделились с нами этой информацией, что позволило нам подробно описать спецификации железа.

Проведя анализ, мы можем выдать более подробный обзор того, что нового можно увидеть в камере iPhone XS, и больше подробностей о её технических возможностях, чем Apple пожелала раскрыть на презентации.

Это именно спецификации железа – притом, что Apple в основном концентрировалась на таких программных улучшениях, как Smart HDR и новый портретный режим.
Читать полностью »

Привет, в этой статье я расскажу про библиотеку ignite, с помощью которой можно легко обучать и тестировать нейронные сети, используя фреймворк PyTorch.

С помощью ignite можно писать циклы для обучения сети буквально в несколько строк, добавлять из коробки расчет стандартных метрик, сохранять модель и т.д. Ну, а для тех кто переехал с TF на PyTorch, можно сказать, что библиотека ignite — Keras для PyTorch.

В статье будет детально разобран пример обучения нейронной сети для задачи классификации, используя ignite

Обучение и тестирование нейронных сетей на PyTorch с помощью Ignite - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js