Рубрика «обработка изображений» - 33

Нейросеть научили дорисовывать на фото людей недостающие детали - 1

Проекты, основа которых — нейросети, не редкость. Они появляются каждый день. Кто-то сортирует огурцы, кто-то рисует картины или сочиняет тексты фейковых новостей, ну а кто-то восстанавливает недостающие детали на фотографиях людей.

Новый проект, который, кстати, уже выложен на GutHub, позволяет восстанавливать детали, которые по той либо иной причине отсутствуют на фото. Кстати, некоторые детали могут быть «фантазией» самой программы. Например, это прическа у лысого человека или же улыбка на фото, где ее не было.
Читать полностью »

В 1943 году американские нейропсихологи Мак-Каллок и Питтс разработали компьютерную модель нейронной сети, а в 1958 первая работающая однослойная сеть распознавала некоторые буквы. Сейчас же нейросети для чего только не используются: для прогнозирования курса валют, диагностики болезней, автопилотов и построения графики в компьютерных играх. Как раз про последнее и поговорим.

Евгений Туманов работает Deep Learning инженером в компании NVIDIA. По итогам его выступления на конференции HighLoad++ мы подготовили рассказ о применении Machine Learning и Deep Learning в графике. Машинное обучение не заканчивается на NLP, Computer Vision, рекомендательных системах и задачах поиска. Даже если вы не очень знакомы с этим направлением, то сможете применить наработки из статьи в своей области или индустрии.

Рассказ будет состоять из состоит из трех частей. Мы сделаем обзор задач в графике, которые решаются с помощью машинного обучения, выведем главную идею, и опишем кейс применения этой идеи в определенной задаче, а конкретно — в рендеринге облаков.Читать полностью »

Взлом музыки для демократизации производного контента

Отказ от ответственности: вся интеллектуальная собственность, проекты и методы, описанные в этой статье, раскрыты в патентах US10014002B2 и US9842609B2.

Вот бы вернуться в 1965 год, постучать в парадную дверь студии «Эбби-Роуд» с пропуском, зайти внутрь — и услышать настоящие голоса Леннона и Маккартни… Что ж, давайте попробуем. Входные данные: MP3 среднего качества песни «Битлз» We Can Work it Out. Верхняя дорожка — входной микс, нижняя дорожка — изолированный вокал, который выделила наша нейросеть.

Читать полностью »

Kaggle-подходы для CV в проде: внедрить нельзя выпилить - 1
Среди дата сайнтистов ведется немало холиваров, и один из них касается соревновательного машинного обучения. Действительно ли успехи на Kaggle показывают способности специалиста решать типичные рабочие задачи? Арсений arseny_info (R&D Team Lead @ WANNABY, Kaggle Master, далее в тексте A.) и Артур n01z3 (Head of Computer Vision @ X5 Retail Group, Kaggle Grandmaster, далее в тексте N.) отмасштабировали холивар на новый уровень: вместо очередного обсуждения в чате взяли микрофоны и устроили публичное обсуждение на митапе, по мотивам которого и родилась эта статья.
Читать полностью »

Я учусь в CS центре в Новосибирске уже второй год. До поступления у меня уже была работа в IT — я работал аналитиком в Яндексе, но мне хотелось развиваться дальше, узнать что-то за пределами текущих задач и, по совету коллеги, я поступил в CS центр. В этой статье я хочу рассказать о практике, которую проходил во время учебы.

В начале первого семестра нам предложили несколько проектов. Мое внимание сразу зацепилось за проект под названием «Метод оценки цвета зерна по фотографии». Эту тему предложили специалисты из Института цитологии и генетики СО РАН, но сам проект был больше связан с анализом и обработкой изображений, чем с биологией. Я выбрал его, потому что интересовался машинным обучением и распознаванием образов и мне хотелось попрактиковаться в этих областях.
Читать полностью »

Всем привет, я один из разработчиков сервиса SearchFace и готов поговорить о нашем сервисе в комментариях.

Разработчик SearchFace о возможностях алгоритма - 1

Из-за шумихи с иском ВК на второй план отошло то важное, ради чего мы запустили сервис — чтобы протестировать возможности поиска. А раз уж теперь сервис доступен широкой публике, хочется продемонстрировать всем, на что способны наши алгоритмы распознавания.
Читать полностью »

Один из главных источников данных для сервиса Яндекс.Карты — спутниковые снимки. Чтобы с картой было удобно работать, на снимках многоугольниками размечаются объекты: леса, водоёмы, улицы, дома и т. п. Обычно разметкой занимаются специалисты-картографы. Мы решили помочь им и научить компьютер добавлять многоугольники домов без участия людей.

За операции с изображениями отвечает область ИТ, которая называется компьютерным зрением. Последние несколько лет большую часть задач из этой области очень удачно решают, применяя нейронные сети. О нашем опыте применения нейронных сетей в картографировании мы и расскажем сегодня читателям Хабра.

Как превратить спутниковые снимки в карты. Компьютерное зрение в Яндексе - 1

Читать полностью »

Увеличь это! Современное увеличение разрешения - 1

Я уже перестал вздрагивать и удивляться, когда звонит телефон и в трубке раздается жесткий уверенный голос: «Вас беспокоит капитан такой-то (майор такой-то), вы можете ответить на пару вопросов?» Почему бы не поговорить с родной полицией…

Вопросы всегда одни и те же. «У нас есть видео с подозреваемым, пожалуйста, помогите восстановить лицо»… «Помогите увеличить номер с видеорегистратора»… «Здесь не видно рук человека, пожалуйста, помогите увеличить»… И так далее в том же духе.

Чтобы было понятно о чем речь — вот реальный пример присланного сильно сжатого видео, где просят восстановить размытое лицо (размер которого эквивалентен примерно 8 пикселям):
Увеличь это! Современное увеличение разрешения - 2

И ладно бы только русские дяди Степы беспокоили, пишут и западные Пинкертоны.
Читать полностью »

Создание автономных машин — популярная нынче тема и много интересного тут происходит на любительском уровне.
Самым старым и известным курсом была онлайн-степень от Udacity.

Итак, в автономных машинах есть очень модный подход — Behavioral Cloning, суть которого заключается в том, что компьютер учится вести себя как человек (за рулем), опираясь только на записанные входные и выходные данные. Грубо говоря, есть база картинок с камеры и соотвествующий им угол поворота руля.
Читать полностью »

Вопрос устройства зрения заметная часть нейробиологии. Данному вопросу посвящены огромные объемы литературы и четыре нобелевские премии, но в сложившейся ситуации нельзя не заметить то, что изложенное в учебниках устройство зрения млекопитающих не справляется с поставленной задачей. Цель данного эссе показать свод причин, почему не стоит закрывать на это глаза. По сути, будет предъявлен портрет тайны зрения, начиная от разнообразия мелких деталей в самом начале потока зрительной информации у млекопитающих, угрозы от их игнорирования, и заканчивая ворохом проблем в понимании обработки мозгом в конце пути.

Устройство системы зрения

На взгляд любого учебника о зрении мы видим в три этапа. Первый этап: свет попадает на сетчатку и преобразуется в нервное возбуждение фоторецепторов – сенсорных нейронов сетчатки. Кроме того глаз нормализует контрастность и яркость, фокусирует изображение. Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js