Рубрика «обработка изображений» - 28

Между идеальным алгоритмом машинного обучения в вакууме и его применением на реальных данных часто лежит пропасть. Вроде бы берешь статью: алгоритм есть, сходимость для данных такого-то типа есть — бери и применяй. Но почему-то оказывается, что твоих данных недостаточно для обучения, да и отличаются они от модельных из статьи, потому что настоящие, не синтетические.

Обычное дело в обосновании алгоритма ввести допущения о чистоте данных и их распределении, которых в реальной жизни не найдёшь. Например, автор статьи экспериментирует на фотографиях взрослых знаменитостей, и все у него замечательно распознается и классифицируется, а в нашем реальном примере попадаются еще и дети, и мультяшные персонажи, и на них всё внезапно ломается. Но есть люди, которые умеют с этим справляться, да так, что пропасть между теорией и практикой перестает казаться неприступной, и, стоит показать как, сразу находятся и другие желающие ее преодолеть.

Используем данные на практике - 1
Читать полностью »

OpenCV на STM32F7-Discovery - 1 Я один из разработчиков операционной системы Embox, и в этой статье я расскажу про то, как у меня получилось запустить OpenCV на плате STM32746G.

Если вбить в поисковик что-то вроде "OpenCV on STM32 board", можно найти довольно много тех, кто интересуется использованием этой библиотеки на платах STM32 или других микроконтроллеров.
Есть несколько видео, которые, судя по названию, должны демонстрировать то, что нужно, но обычно (во всех видео, которые я видел) на плате STM32 производилось только получение картинки с камеры и вывод результата на экран, а сама обработка изображения делалась либо на обычном компьютере, либо на платах помощнее (например, Raspberry Pi).

Читать полностью »

Нейросеть Adobe определяет фотографии, обработанные в Photoshop - 1

Команда Adobe рассказала о новом проекте, который ведет совместно с Калифорнийским университетом — создании искусственного интеллекта, способного выявлять контент, отредактированный при помощи продуктов компании. Первая разработка в серии, нейросеть под названием CNN, различает изображения, к которым применялся один из популярных фильтров Adobe Photoshop, почти в два раза успешнее, чем средний человек.
Читать полностью »

Где находился Ваш дом миллионы лет назад - 1

Виртуальный геохронологический глобус, на котором можно увидеть, как выглядела поверхность нашей планеты в разные эры (Нео-протерозой, Палеозой, Мезозой, Кайнозой), начиная от временного промежутка в 750 миллионов лет назад.
Читать полностью »

Недавно вышла статья которая неплохо показывает тенденцию в машинном обучении последних лет. Если коротко: число стартапов в области машинного обучения в последние два года резко упало.
image
Ну что. Разберём “лопнул ли пузырь”, “как дальше жить” и поговорим откуда вообще такая загогулина.
Читать полностью »

Статьи про компьютерное зрение, интерпретируемость, NLP – мы побывали на конференции AISTATS в Японии и хотим поделиться обзором статей. Это крупная конференция по статистике и машинному обучению, и в этом году она проходит на Окинаве – острове недалеко от Тайваня. В этом посте Юлия Антохина (Yulia_chan) подготовила описание ярких статей из основной секции, в следующем вместе с Анной Папета расскажет про доклады приглашенных лекторов и теоретические исследования. Немного расскажем и про то, как проходила сама конференция и про “неяпонскую” Японию.

imageЧитать полностью »

Microsoft удалила крупнейшую в мире базу лиц MS Celeb, но та уже разошлась по интернету - 1

Microsoft убрала из интернета свою базу данных на 10 миллионов лиц MS Celeb, пишет Financial Times. Фотографии под лицензией Creative Commons использовались для обучения систем распознавания лиц учёными со всего мира. К сожалению, среди них оказались военные подразделения и китайские фирмы SenseTime и Megvii, которые специализируются на разработке систем видеонаблюдения. Вероятно, это могло вызвать недовольство в высших эшелонах власти и породить обвинения в адрес IT-компании, которая якобы оказывает техническое содействие потенциальному врагу.

База данных MS Celeb вышла в 2016 году. Microsoft описывает её как крупнейший общедоступный набор данных распознавания лиц в мире, содержащий более 10 млн изображений почти 100 000 человек.
Читать полностью »

Нейросеть NTechLab заняла второе место на конкурсе NIST по распознаванию действий на видео - 1
Примеры видеороликов из тестового набора

Российская компания NtechLab заняла второе место на конкурсе нейросетей ActEV: Activities in Extended Video среди алгоритмов, способных распознавать действия на видео. В конкурсе принимали участие 39 алгоритмов, в финальном этапе ActEV-PC Independent Evaluation остались семь участников.

Такие системы могут широко применяться в коммерческих системах. Например, это позволяет автоматизировать поиск неправильно припаркованных автомобилей, оставленных предметов, а также курящих в неположенных местах граждан — и оперативно оповещать об этих действиях полицию. Система автоматического распознавания действий для правоохранительных органов особенно эффективна в сочетании с обширной системой видеонаблюдения, которая работает в связке с системой распознавания лиц.
Читать полностью »

В последнее время мы в группе распознавания компании ABBYY всё больше применяем нейронные сети в различных задачах. Очень хорошо они зарекомендовали себя в первую очередь для сложных видов письменности. В прошлых постах мы рассказывали о том, как мы используем нейронные сети для распознавания японской, китайской и корейской письменности.

image Пост про распознавания японских и китайских иероглифов
image Пост про распознавание корейских символов

В обоих случаях мы использовали нейронные сети с целью полной замены метода классификации отдельного символа. Во всех подходах фигурировало множество различных сетей, и в задачи некоторых из них входила необходимость адекватно работать на изображениях, которые не являются символами. Модель в этих ситуациях должна как-то сигнализировать о том, что перед нами не символ. Сегодня мы как раз расскажем о том, зачем это в принципе может быть нужно, и о подходах, с помощью которых можно добиться желаемого эффекта.

Мотивация

А в чём вообще проблема? Зачем нужно работать на изображениях, которые не являются отдельными символами? Казалось бы, можно разделить фрагмент строки на символы, классифицировать их все и собрать из этого результат, как, например, на картинке ниже.

Отличаем символы от мусора: как построить устойчивые нейросетевые модели в задачах OCR - 3

Да, конкретно в данном случае так действительно можно сделать. Но, увы, реальный мир устроен куда более сложно, и на практике при распознавании приходится иметь дело с геометрическими искажениями, смазом, пятнами кофе и прочими трудностями.
Читать полностью »

Изображения формата JPEG встречаются повсюду в нашей цифровой жизни, но за этим покровом осведомлённости скрываются алгоритмы, устраняющие детали, не воспринимаемые человеческим глазом. В итоге получается высочайшее визуальное качество при наименьшем размере файла – но как конкретно всё это работает? Давайте посмотрим, чего именно не видят наши глаза!

Как устроен формат JPEG - 1

Легко принять, как само собой разумеющееся, возможность отправить фотку другу, и не волноваться по поводу того, какое устройство, браузер или операционную систему он использует – однако так было не всегда. К началу 1980-х компьютеры умели хранить и показывать цифровые изображения, однако по поводу наилучшего способа для этого существовало множество конкурирующих идей. Нельзя было просто отправить изображение с одного компьютера на другой и надеяться, что всё заработает.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js