Инженер Amazon Бен Хэмм разработал умный блокиратор, который не дает его коту по кличке Метрик приносить внутрь дома пойманных охотничьими лапками и зубками и по факту уже мертвых птиц и крыс.
Читать полностью »
Рубрика «обработка изображений» - 27
Инженер Amazon создал блокирующее устройство с ИИ, которое не пускает в дом кота с уличной добычей
2019-07-02 в 15:45, admin, рубрики: diy или сделай сам, добыча, запрет, изображение, ИИ, искусственный интеллект, кот, машинное обучение, Научно-популярное, обработка изображений, обучениеШтат Виргиния вводит уголовное наказание за распространение Deepfake-фотографий
2019-07-02 в 14:13, admin, рубрики: изображения, искусственный интеллект, копирайтинг, машинное обучение, обработка изображений, Софт
Начиная с первого июля в штате Виргиния вводятся изменения в закон о распространении видеоматериалов интимного содержания.
Читать полностью »
Автоматическая сегментация дыхательных органов
2019-06-30 в 20:59, admin, рубрики: 3d, DICOM Viewer, dicom-просмотрщик, inobitec, Matlab, Алгоритмы, Блог компании Inobitec, визуализация данных, воксели, инобитек, компьютерная томография, Компьютерное зрение, КТ, магнитно-резонансная томография, медицина, МРТ, обработка изображений, объемное изображение, Работа с 3D-графикой, сегментация легкихРучная сегментация легких занимает около 10 минут и требуется определенная сноровка, чтобы получить такой же качественный результат, как при автоматической сегментации. Автоматическая сегментация занимает около 15 секунд.
Я предполагал, что без нейронной сети удастся получить точность не выше 70%. Также я предполагал, что морфологические операции – это только подготовка изображения к более сложным алгоритмам. Но в результате обработки тех, хоть и немногочисленных 40 образцов томографических данных, что есть на руках, алгоритм выделил легкие без ошибок, причём после теста на первых пяти случаях алгоритм уже не претерпевал значительных изменений и с первого применения правильно отработал на остальных 35 исследованиях без изменения настроек.
Также нейронные сети имеют минус – для их обучения нужны сотни обучающих образцов лёгких, которые придётся размечать вручную.
Погружение в свёрточные нейронные сети. Часть 5 – 1 — 9
2019-06-29 в 14:40, admin, рубрики: AI, ashmig, big data, cnn, convolutional neural networks, machine learning, искусственный интеллект, машинное обучение, обработка изображенийПолный курс на русском языке можно найти по этой ссылке.
Оригинальный курс на английском доступен по этой ссылке.
Выход новых лекций запланирован каждые 2-3 дня.
Ищем астероиды — проект «Hubble Asteroid Hunter»
2019-06-29 в 11:40, admin, рубрики: Hubble, Hubble Asteroid Hunter, MPC, астероид, астрономия, космонавтика, Научно-популярное, обработка изображений, трек
Центр малых планет (Minor Planet Center, MPC) Смитсоновской астрофизической обсерватории (SAO) и аэрокосмическое агентство NASA запустили проект «Hubble Asteroid Hunter», с помощью которого любой глазастый пользователь компьютера или планшета может помочь астрономам найти треки новых астероидов.
Читать полностью »
Динамическое программирование в реальном мире: вырезание швов
2019-06-28 в 14:44, admin, рубрики: seam carving, Алгоритмы, вырезание швов, динамическое программирование, изменение размера изображения, обработка изображенийУ динамического программирования репутация метода, который вы изучаете в университете, а затем вспоминаете только на собеседованиях. Но на самом деле метод применим во многих ситуациях. По сути, это техника эффективного решения задач, которые можно разбить на множество сильно повторяющихся подзадач.
В статье я покажу интересное реальное применение динамического программирования — задача вырезания швов (seam carving). Задача и методика подробно описаны в работе Авидана и Шамира «Вырезание швов для изменения размеров изображения с учётом контента» (статья в свободном доступе).
Эта одна из серии статей по динамическому программированию. Если хотите освежить в памяти методы, см. иллюстрированное введение в динамическое программирование.
Читать полностью »
Используем данные на практике
2019-06-27 в 15:28, admin, рубрики: computer vision, data analysis, data science, machine learning, nlp (natural language processing), usedataconf, Алгоритмы, Блог компании Конференции Олега Бунина (Онтико), конференции, машинное обучение, обработка изображенийМежду идеальным алгоритмом машинного обучения в вакууме и его применением на реальных данных часто лежит пропасть. Вроде бы берешь статью: алгоритм есть, сходимость для данных такого-то типа есть — бери и применяй. Но почему-то оказывается, что твоих данных недостаточно для обучения, да и отличаются они от модельных из статьи, потому что настоящие, не синтетические.
Обычное дело в обосновании алгоритма ввести допущения о чистоте данных и их распределении, которых в реальной жизни не найдёшь. Например, автор статьи экспериментирует на фотографиях взрослых знаменитостей, и все у него замечательно распознается и классифицируется, а в нашем реальном примере попадаются еще и дети, и мультяшные персонажи, и на них всё внезапно ломается. Но есть люди, которые умеют с этим справляться, да так, что пропасть между теорией и практикой перестает казаться неприступной, и, стоит показать как, сразу находятся и другие желающие ее преодолеть.
OpenCV на STM32F7-Discovery
2019-06-26 в 12:40, admin, рубрики: DIY, embox, mcu, opencv, OSDev, stm32, stm32f7discovery, Блог компании Embox, микроконтроллеры, обработка изображений, портирование, портирование приложений, программирование микроконтроллеров, системное программированиеЯ один из разработчиков операционной системы Embox, и в этой статье я расскажу про то, как у меня получилось запустить OpenCV на плате STM32746G.
Если вбить в поисковик что-то вроде "OpenCV on STM32 board", можно найти довольно много тех, кто интересуется использованием этой библиотеки на платах STM32 или других микроконтроллеров.
Есть несколько видео, которые, судя по названию, должны демонстрировать то, что нужно, но обычно (во всех видео, которые я видел) на плате STM32 производилось только получение картинки с камеры и вывод результата на экран, а сама обработка изображения делалась либо на обычном компьютере, либо на платах помощнее (например, Raspberry Pi).
Нейросеть Adobe определяет фотографии, обработанные в Photoshop
2019-06-19 в 15:03, admin, рубрики: анализ изображений, искусственный интеллект, обработка изображений
Команда Adobe рассказала о новом проекте, который ведет совместно с Калифорнийским университетом — создании искусственного интеллекта, способного выявлять контент, отредактированный при помощи продуктов компании. Первая разработка в серии, нейросеть под названием CNN, различает изображения, к которым применялся один из популярных фильтров Adobe Photoshop, почти в два раза успешнее, чем средний человек.
Читать полностью »