Рубрика «обработка изображений» - 22

Я много писал о проектах компьютерного зрения и машинного обучения, таких как системы распознавания объектов и проекты распознавания лиц. У меня также есть опенсорсная библиотека распознавания лиц на Python, которая как-то вошла в топ-10 самых популярных библиотек машинного обучения на Github. Всё это привело к тому, что новички в Python и машинном зрении задают мне много вопросов.

Глупая причина, по которой не работает ваше хитрое приложение машинного зрения: ориентация в EXIF - 1

По опыту, есть одна конкретная техническая проблема, которая чаще всего ставит людей в тупик. Нет, это не сложный теоретический вопрос или проблема с дорогими GPU. Дело в том, что почти все загружают в память изображения повёрнутыми, даже не подозревая об этом. А компьютеры не очень хорошо обнаруживают объекты или распознают лица в повёрнутых изображениях.
Читать полностью »

image

Возможно, прозрачность не кажется какой-то интересной темой. Формат GIF, позволявший некоторым пикселям просвечивать сквозь фон, опубликован более 30 лет назад. Почти в каждом приложении для графического дизайна, выпущенном за последние два десятка лет, поддерживается создание полупрозрачного контента. Эти понятия давно перестали быть чем-то новым.

В своей статье я хочу показать, что на самом деле прозрачность в цифровых изображениях намного интереснее, чем кажется — в том, что мы воспринимаем как нечто само собой разумеющееся, есть невидимая глубина и красота.
Читать полностью »

Полный курс на русском языке можно найти по этой ссылке.
Оригинальный курс на английском доступен по этой ссылке.

Погружение в свёрточные нейронные сети: передача обучения (transfer learning) - 1

Читать полностью »

Я хотел, чтобы в моей игре The Last Boundary была туманность. Они потрясающе выглядят и космос без них не космос, а просто разбросанные по фону белые пиксели. Но так как игру я делаю в стиле «пиксель-арт», то мне нужно было как-то заставить мою библиотеку шума генерировать пикселизированные изображения.

Вот несколько примеров:

Создание пиксельной туманности при помощи шума и Median Cut - 1

Создание пиксельной туманности при помощи шума и Median Cut - 2

Ещё примеры

Создание пиксельной туманности при помощи шума и Median Cut - 3

Создание пиксельной туманности при помощи шума и Median Cut - 4

Создание пиксельной туманности при помощи шума и Median Cut - 5

Создание пиксельной туманности при помощи шума и Median Cut - 6

В одноцветных примера используется 8 цветов, а в других — 16 цветов. В этой статье я расскажу, как создавал пикселизированную туманность для The Last Boundary.
Читать полностью »

image

image

В первой части этого поста я рассказал, как многократное применение стандартных halfpel-фильтров создаёт искажённые изображения, а затем показал новый фильтр, не имеющий данной проблемы.

Он был немного более размытым и это устроит не всех. Однако он был лучше своих альтернатив — на самом деле именно этот фильтр использовался в оригинальной версии Bink 2. Из-за постоянной нагрузки на работе мне никогда не удавалось вернуться к нему снова и исследовать его подробнее.

Но теперь, когда я нашёл время для возврата к этому фильтру и написания статьи о нём, мне наконец стоит задаться вопросом: существует ли менее размывающий фильтр, который всё же сохраняет свойство «бесконечной стабильности»?

Предупреждение о спойлерах: правильный ответ — «вероятно, нет» и «определённо, есть». Но прежде чем мы дойдём до того, почему на этот вопрос есть два ответа и что они означают, давайте получше подготовим испытательный стенд.
Читать полностью »

В Австралии власти с помощью ИИ начали фиксировать факт использования телефона водителем за рулем - 1
Пример картинки, полученной с помощью системы «Mobile Phone Detection Camera»

В австралийском департаменте транспорта Нового Южного Уэльса успешно завершили тестирование системы видеофиксации и обработки данных с помощью ИИ, который анализирует картинку в салоне автомобиля и подготавливает материалы для составления протокола о нарушении при обнаружении использования в руках водителя мобильных устройств (телефонов и других гаджетов).

По данным издания Associated Press, в течение полугодовой тестовой эксплуатации видеосистема выполнила около 8,5 миллионов снимков салонов автомобилей. Было обнаружено почти 100 тыс. фактов использования водителями разных гаджетов за рулем. Причем, в некоторых случаях водители использовали одновременно смартфон и планшет.
Читать полностью »

Завершив создание веб-архитектуры для нашего нового веб-комикса Meow the Infinite, я решил, что самое время написать несколько давно назревших технических статей. Данная статья будет посвящена фильтру, разработанному мной несколько лет назад. Он никогда не обсуждался в области сжатия видео, хотя мне кажется, что это стоит сделать.

В 2011 году я разработал “half-pel filter”. Это особый вид фильтра, который берёт входящее изображение и максимально убедительно отображает, как бы выглядело изображение при сдвиге ровно на полпикселя.

Вероятно, вы задаётесь вопросом, зачем вообще может понадобиться такой фильтр. На самом деле, они достаточно часто встречаются в современных видеокодеках. Видеокодеки используют подобные фильтры, чтобы брать фрагменты предыдущих кадров и использовать их в последующих кадрах. Более старые кодеки перемещали данные кадра только по целому пикселю за раз, однако новые кодеки пошли дальше и для лучшей передачи мелких движений позволяют выполнять сдвиг на половину или даже на четверть пикселя.

При анализе поведения алгоритмов компенсации движения в традиционных halfpel-фильтрах, Джефф Робертс выяснил, что при многократном применении к последовательным кадрам они быстро деградируют, заставляя другие части видеокомпрессора ипользовать для исправления артефактов больше данных, чем необходимо. Если отключить эти исправления и взглянуть на «сырые» результаты halfpel-фильтра, то такое исходное изображение:

Как я создал фильтр, не портящий изображение даже после миллиона прогонов - 1

превращается вот в такое:

Как я создал фильтр, не портящий изображение даже после миллиона прогонов - 2

всего спустя одну секунду видео. Как и должно, оно сдвинуто в сторону, потому что каждый кадр сдвигал изображение на полпикселя. Но результат выглядит не как перемещённая версия исходного изображения, он серьёзно искажён.
Читать полностью »

Вот и наступил новый этап в развии Raspberry-танка.

В предыдущей серии оказалось, что семантическая сегментация из коробки не по зубам Raspberry.

Мозговой штурм и комментарии позволили определить следующие направления развития:

  • обучить собственную E-net сеть под нужный размер картинок
  • передать запуск нейросети с самой Raspberry на специальную железку, из которых наиболее часто упоминался Intel Movidius (он же Neural Compute Stick aka NCS).

Приделать к роботу новую железку — это же самое интересное в роботехнике, поэтому кропотливая работа по обучению нейросети оказалась отложенной до лучших времен.

Несколько дней — и интеловская чудо-железка у меня в руках.

Она довольно большая, и в нижний USB разъем малинки ее не воткнешь. Учитывая, что правые USB порты были заслонены штативом камеры, а верхний левый занят GPS модулем, вариантов оставалось не то, чтобы много.

В итоге, GPS был посажен на кабель, переведен вниз, и кабель обернут вокруг штатива, а на его место зашел NCS.

На этом hardware часть была завершена.

Робот-танк на Raspberry Pi с Intel Neural Computer Stick 2 - 1
Читать полностью »

Нейронные сеточки захватывают мир. Они считают посетителей, контролируют качество, ведут статистику и оценивают безопасность. Куча стартапов, использование в промышленности.
Замечательные фреймворки. Что PyTorch, что второй TensorFlow. Всё становиться удобнее и удобнее, проще и проще…
Но есть одна тёмная сторона. Про неё стараются молчать. Там нет ничего радостного, только тьма и отчаяние. Каждый раз когда видишь позитивную статью — грустно вздыхаешь, так как понимаешь что просто человек что-то не понял. Или скрыл.
Давайте поговорим про продакшн на embeded-устройствах.
Ультимативное сравнение embedded платформ для AI - 1
Читать полностью »

Нейросеть «раскрасила» картину Пикассо, скрытую под поздней его работой - 1

Источник: Raiders of the lost Art

В 1902 году Пабло Пикассо нарисовал картину, которую позже перекрыл своей известной работой «Старый гитарист». Второй, скрытый под «Гитаристом» слой, обнаружили в США больше ста лет спустя — в 1998 году. Тогда специалисты Чикагского университета сфотографировали полотно Пикассо в инфракрасном диапазоне и сделали рентгенографию. Оказалось, что под первым слоем краски изображена женщина.

Фото перекрытой картины оказалось достаточно чётким, чтобы понять, что на нём изображено, но при этом оно было чёрно-белым. Энтони Бурашед из Университетского колледжа в Лондоне и Джордж Канн из коллектива Oxia Plus создали алгоритм, который «раскрасил» картину в стиле Пикассо.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js