Рубрика «обработка изображений» - 22

мой велосипед

Введение

Здравствуйте, уважаемыее!

Последние два года моей работы в компании Synesis были тесно связаны с процессом создания и развития Synet — открытой библиотеки для запуска предварительно обученных сверточных нейронных сетей на CPU. В процессе этой работы мне пришлось столкнуться с рядом интересных моментов, которые касаются вопросов оптимизации алгоритмов прямого распространения сигнала в нейронных сетях. Как мне кажется, описание этих моментов было бы весьма интересным для читателей Хабрахабра. Чему я и хочу посвятить цикл своих статей. Продолжительность цикла будет зависеть от вашего интереса к данной теме ну и конечно же от моей способности побороть лень. Начать цикл хочется с описания самого велосипеда фреймворка. Вопросы алгоритмов, которые лежат в его основе будут раскрыты в последующих статьях.
Читать полностью »

В ноябре 2017 года аккаунт Reddit под названием deepfakes опубликовал первые в интернете порнографические видеоролики, в которых программное обеспечение заменяло лица реальных актрис лицами голливудских знаменитостей. Почти два года спустя «дипфейки» стали общим явлением и термином, который описывает любое поддельное видео, сделанное с помощью программ ИИ. Этот метод используют и для смешных видеороликов на YouTube, он также вызывает озабоченность законодателей, опасающихся политической дезинформации. Тем не менее, новое исследование говорит о том, что дипфейки в основном остаются верными своим непристойным корням.

Стартап Deeptrace провел своего рода перепись дипфейков в июне-июле 2019 года, чтобы отрекламировать свои инструменты обнаружения, которые он надеется продать новостным организациям и онлайн-платформам. Всего стартап обнаружил 14 678 видеороликов, открыто представленных в качестве дипфейков: почти в два раза больше, чем семь месяцев назад. Около 96% из них оказались порнографическими.

История дипфейков повторяют историю многих других медиатехнологий, которые получили распространение благодаря порно: от VHS до потокового вещания.
Читать полностью »

Создаем датасет для распознавания счетчиков на Яндекс.Толоке - 1

Как-то два года назад, случайно включив телевизор, я увидел интересный сюжет в программе "Вести". В нём рассказывали о том, что департамент информационных технологий Москвы создает нейросеть, которая будет считывать показания счетчиков воды по фотографиям. В сюжете телеведущий попросил горожан помочь проекту и прислать снимки своих счетчиков на портал mos.ru, чтобы на них обучить нейронную сеть. 

Если Вы — департамент Москвы, то выпустить ролик на федеральном канале и попросить людей прислать изображения счетчиков — не очень большая проблема. Но что делать, если Вы — маленький стартап, и сделать рекламу на телеканале не можете? Как получить 50000 изображений счетчиков в таком случае?Читать полностью »

Я много писал о проектах компьютерного зрения и машинного обучения, таких как системы распознавания объектов и проекты распознавания лиц. У меня также есть опенсорсная библиотека распознавания лиц на Python, которая как-то вошла в топ-10 самых популярных библиотек машинного обучения на Github. Всё это привело к тому, что новички в Python и машинном зрении задают мне много вопросов.

Глупая причина, по которой не работает ваше хитрое приложение машинного зрения: ориентация в EXIF - 1

По опыту, есть одна конкретная техническая проблема, которая чаще всего ставит людей в тупик. Нет, это не сложный теоретический вопрос или проблема с дорогими GPU. Дело в том, что почти все загружают в память изображения повёрнутыми, даже не подозревая об этом. А компьютеры не очень хорошо обнаруживают объекты или распознают лица в повёрнутых изображениях.
Читать полностью »

image

Возможно, прозрачность не кажется какой-то интересной темой. Формат GIF, позволявший некоторым пикселям просвечивать сквозь фон, опубликован более 30 лет назад. Почти в каждом приложении для графического дизайна, выпущенном за последние два десятка лет, поддерживается создание полупрозрачного контента. Эти понятия давно перестали быть чем-то новым.

В своей статье я хочу показать, что на самом деле прозрачность в цифровых изображениях намного интереснее, чем кажется — в том, что мы воспринимаем как нечто само собой разумеющееся, есть невидимая глубина и красота.
Читать полностью »

Полный курс на русском языке можно найти по этой ссылке.
Оригинальный курс на английском доступен по этой ссылке.

Погружение в свёрточные нейронные сети: передача обучения (transfer learning) - 1

Читать полностью »

Я хотел, чтобы в моей игре The Last Boundary была туманность. Они потрясающе выглядят и космос без них не космос, а просто разбросанные по фону белые пиксели. Но так как игру я делаю в стиле «пиксель-арт», то мне нужно было как-то заставить мою библиотеку шума генерировать пикселизированные изображения.

Вот несколько примеров:

Создание пиксельной туманности при помощи шума и Median Cut - 1

Создание пиксельной туманности при помощи шума и Median Cut - 2

Ещё примеры

Создание пиксельной туманности при помощи шума и Median Cut - 3

Создание пиксельной туманности при помощи шума и Median Cut - 4

Создание пиксельной туманности при помощи шума и Median Cut - 5

Создание пиксельной туманности при помощи шума и Median Cut - 6

В одноцветных примера используется 8 цветов, а в других — 16 цветов. В этой статье я расскажу, как создавал пикселизированную туманность для The Last Boundary.
Читать полностью »

image

image

В первой части этого поста я рассказал, как многократное применение стандартных halfpel-фильтров создаёт искажённые изображения, а затем показал новый фильтр, не имеющий данной проблемы.

Он был немного более размытым и это устроит не всех. Однако он был лучше своих альтернатив — на самом деле именно этот фильтр использовался в оригинальной версии Bink 2. Из-за постоянной нагрузки на работе мне никогда не удавалось вернуться к нему снова и исследовать его подробнее.

Но теперь, когда я нашёл время для возврата к этому фильтру и написания статьи о нём, мне наконец стоит задаться вопросом: существует ли менее размывающий фильтр, который всё же сохраняет свойство «бесконечной стабильности»?

Предупреждение о спойлерах: правильный ответ — «вероятно, нет» и «определённо, есть». Но прежде чем мы дойдём до того, почему на этот вопрос есть два ответа и что они означают, давайте получше подготовим испытательный стенд.
Читать полностью »

В Австралии власти с помощью ИИ начали фиксировать факт использования телефона водителем за рулем - 1
Пример картинки, полученной с помощью системы «Mobile Phone Detection Camera»

В австралийском департаменте транспорта Нового Южного Уэльса успешно завершили тестирование системы видеофиксации и обработки данных с помощью ИИ, который анализирует картинку в салоне автомобиля и подготавливает материалы для составления протокола о нарушении при обнаружении использования в руках водителя мобильных устройств (телефонов и других гаджетов).

По данным издания Associated Press, в течение полугодовой тестовой эксплуатации видеосистема выполнила около 8,5 миллионов снимков салонов автомобилей. Было обнаружено почти 100 тыс. фактов использования водителями разных гаджетов за рулем. Причем, в некоторых случаях водители использовали одновременно смартфон и планшет.
Читать полностью »

Завершив создание веб-архитектуры для нашего нового веб-комикса Meow the Infinite, я решил, что самое время написать несколько давно назревших технических статей. Данная статья будет посвящена фильтру, разработанному мной несколько лет назад. Он никогда не обсуждался в области сжатия видео, хотя мне кажется, что это стоит сделать.

В 2011 году я разработал “half-pel filter”. Это особый вид фильтра, который берёт входящее изображение и максимально убедительно отображает, как бы выглядело изображение при сдвиге ровно на полпикселя.

Вероятно, вы задаётесь вопросом, зачем вообще может понадобиться такой фильтр. На самом деле, они достаточно часто встречаются в современных видеокодеках. Видеокодеки используют подобные фильтры, чтобы брать фрагменты предыдущих кадров и использовать их в последующих кадрах. Более старые кодеки перемещали данные кадра только по целому пикселю за раз, однако новые кодеки пошли дальше и для лучшей передачи мелких движений позволяют выполнять сдвиг на половину или даже на четверть пикселя.

При анализе поведения алгоритмов компенсации движения в традиционных halfpel-фильтрах, Джефф Робертс выяснил, что при многократном применении к последовательным кадрам они быстро деградируют, заставляя другие части видеокомпрессора ипользовать для исправления артефактов больше данных, чем необходимо. Если отключить эти исправления и взглянуть на «сырые» результаты halfpel-фильтра, то такое исходное изображение:

Как я создал фильтр, не портящий изображение даже после миллиона прогонов - 1

превращается вот в такое:

Как я создал фильтр, не портящий изображение даже после миллиона прогонов - 2

всего спустя одну секунду видео. Как и должно, оно сдвинуто в сторону, потому что каждый кадр сдвигал изображение на полпикселя. Но результат выглядит не как перемещённая версия исходного изображения, он серьёзно искажён.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js