Рубрика «обработка изображений» - 21

Высоконагруженный сервис для вычислений на GPU - 1

Привет! Я руковожу разработкой платформы Vision — это наша публичная платформа, которая предоставляет доступ к моделям компьютерного зрения и позволяет вам решать такие задачи, как распознавание лиц, номеров, объектов и целых сцен. И сегодня хочу на примере Vision рассказать, как реализовать быстрый высоконагруженный сервис, использующий видеокарты, как его разворачивать и эксплуатировать.
Читать полностью »

Видеонаблюдение в Москве: текущие реалии и перспективы - 1

По данным ДИТ, в этом году городская система видеонаблюдения Москвы состоит из примерно 167 тысяч камер. Эти устройства установлены в самых разных местах — площадях, парках, больницах, супермаркетах и т.п. Камеры как аналоговые, так и цифровые, но последних становится все больше, поскольку они и видеопоток обеспечивают более качественный, плюс к ним гораздо проще подключить видеоаналитику.

Но как все это работает и кто за все отвечает? В этой статье попробуем кратко разобраться с этими вопросами.
Читать полностью »

Как-то мне в руки попало тестовое задание. Академический интерес взял верх и я решил посидеть над этой задачкой. Мое решение не претендует на оптимальность и правильность. Мне просто интересно было ее решить.

Читать полностью »

Нейросеть строит пейзажное видео по одной фотографии - 1

Учёные из Университета Цукубы и Технологического Университета Тойохаси представили новую статью на SIGGRAPH Asia 2019. Она называется «Анимационный пейзаж: изучение самостоятельного движения и внешнего вида объектов для синтеза видеоизображений из одного изображения». Их метод с помощью свёрточных нейронных сетей (CNN) может создавать анимацию с высоким разрешением из одного ландшафтного изображения.

«Из пейзажного изображения люди могут представить, как движутся облака и меняется цвет неба с течением времени. Воспроизведение таких переходов — довольно распространённое явление. Например, люди используют синемаграммы и другие методы».

К сожалению, отмечают учёные, при использовании подобных методов разрешение и качество полученного видео часто оказывается намного ниже ожидаемых. Одной из причин неудовлетворительных результатов является то, что пространственно-временная область видео слишком велика по сравнению с изображениями. Другая причина — неопределенность в будущем, в прогнозировании кадров.
Читать полностью »

Одной из интересных и популярных (особенно перед разными юбилеями) задач является «раскрашивание» старых черно-белых фотографий и даже фильмов. Тема это достаточно интересная, как с математической, так и с исторической точки зрения. Мы рассмотрим реализацию этого процесса на Python, который любой желающий сможет запустить на своем домашнем ПК.

Результат работы на фото.

Раскрашиваем ч-б фото с помощью Python - 1

Для тех кому интересно, принцип работы, исходники и примеры под катом.
Читать полностью »

Рубрика «Читаем статьи за вас». Январь — Июнь 2019 - 1

Привет! Продолжаем публиковать рецензии на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество!

Статьи на сегодня:

  1. Neural Ordinary Differential Equations (University of Toronto, 2019)
  2. Semi-Unsupervised Learning with Deep Generative Models: Clustering and Classifying using Ultra-Sparse Labels (University of Oxford, The Alan Turing Institute, London, 2019)
  3. Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure (Massachusetts Institute of Technology, Harvard University, 2019)
  4. Deep reinforcement learning from human preferences (OpenAI, DeepMind, 2017)
  5. Exploring Randomly Wired Neural Networks for Image Recognition (Facebook AI Research, 2019)
  6. Photofeeler-D3: A Neural Network with Voter Modeling for Dating Photo Rating (Photofeeler Inc., 2019)
  7. MixMatch: A Holistic Approach to Semi-Supervised Learning (Google Reasearch, 2019)
  8. Divide and Conquer the Embedding Space for Metric Learning (Heidelberg University, 2019)

Читать полностью »

мой велосипед

Введение

Здравствуйте, уважаемыее!

Последние два года моей работы в компании Synesis были тесно связаны с процессом создания и развития Synet — открытой библиотеки для запуска предварительно обученных сверточных нейронных сетей на CPU. В процессе этой работы мне пришлось столкнуться с рядом интересных моментов, которые касаются вопросов оптимизации алгоритмов прямого распространения сигнала в нейронных сетях. Как мне кажется, описание этих моментов было бы весьма интересным для читателей Хабрахабра. Чему я и хочу посвятить цикл своих статей. Продолжительность цикла будет зависеть от вашего интереса к данной теме ну и конечно же от моей способности побороть лень. Начать цикл хочется с описания самого велосипеда фреймворка. Вопросы алгоритмов, которые лежат в его основе будут раскрыты в последующих статьях.
Читать полностью »

В ноябре 2017 года аккаунт Reddit под названием deepfakes опубликовал первые в интернете порнографические видеоролики, в которых программное обеспечение заменяло лица реальных актрис лицами голливудских знаменитостей. Почти два года спустя «дипфейки» стали общим явлением и термином, который описывает любое поддельное видео, сделанное с помощью программ ИИ. Этот метод используют и для смешных видеороликов на YouTube, он также вызывает озабоченность законодателей, опасающихся политической дезинформации. Тем не менее, новое исследование говорит о том, что дипфейки в основном остаются верными своим непристойным корням.

Стартап Deeptrace провел своего рода перепись дипфейков в июне-июле 2019 года, чтобы отрекламировать свои инструменты обнаружения, которые он надеется продать новостным организациям и онлайн-платформам. Всего стартап обнаружил 14 678 видеороликов, открыто представленных в качестве дипфейков: почти в два раза больше, чем семь месяцев назад. Около 96% из них оказались порнографическими.

История дипфейков повторяют историю многих других медиатехнологий, которые получили распространение благодаря порно: от VHS до потокового вещания.
Читать полностью »

Создаем датасет для распознавания счетчиков на Яндекс.Толоке - 1

Как-то два года назад, случайно включив телевизор, я увидел интересный сюжет в программе "Вести". В нём рассказывали о том, что департамент информационных технологий Москвы создает нейросеть, которая будет считывать показания счетчиков воды по фотографиям. В сюжете телеведущий попросил горожан помочь проекту и прислать снимки своих счетчиков на портал mos.ru, чтобы на них обучить нейронную сеть. 

Если Вы — департамент Москвы, то выпустить ролик на федеральном канале и попросить людей прислать изображения счетчиков — не очень большая проблема. Но что делать, если Вы — маленький стартап, и сделать рекламу на телеканале не можете? Как получить 50000 изображений счетчиков в таком случае?Читать полностью »

Я много писал о проектах компьютерного зрения и машинного обучения, таких как системы распознавания объектов и проекты распознавания лиц. У меня также есть опенсорсная библиотека распознавания лиц на Python, которая как-то вошла в топ-10 самых популярных библиотек машинного обучения на Github. Всё это привело к тому, что новички в Python и машинном зрении задают мне много вопросов.

Глупая причина, по которой не работает ваше хитрое приложение машинного зрения: ориентация в EXIF - 1

По опыту, есть одна конкретная техническая проблема, которая чаще всего ставит людей в тупик. Нет, это не сложный теоретический вопрос или проблема с дорогими GPU. Дело в том, что почти все загружают в память изображения повёрнутыми, даже не подозревая об этом. А компьютеры не очень хорошо обнаруживают объекты или распознают лица в повёрнутых изображениях.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js