Рубрика «обработка изображений» - 20

image

Пару лет назад я написал очень простую реализацию фрактального сжатия изображений для студенческой работы и выложил код на github.

К моему удивлению, репозиторий оказался довольно популярным, поэтому я решил обновить код и написать статью, объясняющую его и теорию.
Читать полностью »

Художники заметили, что сайты воруют арты из Twitter-аккаунтов и делают из них принты для футболок - 1

Художники объявили войну сайтам, которые предлагают купить футболки с рисунками. В течение нескольких лет художники, которые публиковали свои работы в интернете, натыкались на сайты, торгующие футболками и другими товарами с их рисунками без разрешения или какой-либо компенсации. Несколько художников выдвинули теорию, в соответствии с которой арты находили боты.
Читать полностью »

Привет, это Smart Engines. Десант из 28 разработчиков систем распознавания на основе искусственного интеллекта только что вернулся из Амстердама, где мы принимали участие в международной научной конференции по компьютерному зрению ICMV. В статье мы постараемся объяснить, почему мы так много времени уделяем науке и ездим на научные конференции.

Зачем мы ездим на научные конференции? - 1

Сегодня в мире развития науки и высоких технологий произошла катастрофическая подмена понятий: за науку выдается то, что наукой не является ни в каком приближении, учеными называют программистов и инженеров, наукой называют решение простейших инженерных задач. В информационном пространстве роль фундаментальной науки в развитии технологий явно занижена. Многие забывают, что сенсорный экран айфона — это не сам по себе сенсорный экран айфона, а воплощение в жизнь идей фундаментальных исследований полупроводниковых гетероструктур нашего соотечественника нобелевского лауреата Ж.И. Алферова. Карты Google (или Яндекcа) — это не просто карты в мобильнике, а воплощение фундаментальных исследований в области вычислительной геометрии. И кстати фильм “Аватар” — это тоже на 99% вычислительная геометрия. Читать полностью »

Компьютерное зрение всем, даром - 1

20 лет назад, в 1999 году, компания Kyocera выпустила первый мобильный телефон с цифровой камерой – Visual Phone VP-210. С тех пор, благодаря невероятно большому и растущему рынку мобильных устройств связи, ПЗС-матрицы цифровых камер совершили невероятный скачок по всем параметрам. Чувствительность, диапазон, размер, энергопотребление, но что ещё важнее – цена.

В наших реалиях модуль камеры, вообще-то весьма технологически сложное устройство, может стоить всего несколько долларов. Это кардинально меняет взгляд на многие процессы и задачи. Ранее сложной задачей было заполучить камеру, технически удовлетворяющую минимальным требованиям. Пройдя такое испытание, решение вопросов обработки изображений казалось лишь приятными хлопотами. Теперь же вопрос софта, который будет обрабатывать информацию с камеры, стоит более остро. Планка физического и экономического доступа к технологии упала так низко, что коснулась границы компетентности пользователя.

Давайте на реальных примерах рассмотрим, насколько сложно (или просто) сейчас работать с изображениями и какие задачи под силу айтишнику иной специализации.
Читать полностью »

Привет! Сегодня я расскажу читателям Хабра о том, как мы создавали технологию распознавания текста, работающую на 45 языках и доступную пользователям Яндекс.Облака, какие задачи мы ставили и как их решали. Будет полезно, если вы работаете над схожими проектами или хотите узнать, как так получилось, что сегодня вам достаточно сфотографировать вывеску турецкого магазина, чтобы Алиса перевела её на русский.

Как мы создавали технологию оптического распознавания текста. OCR в Яндексе - 1

Читать полностью »

Тренды в компьютерном зрении. Хайлайты ICCV 2019 - 1

Нейросети в компьютерном зрении активно развиваются, многие задачи ещё далеки от решения. Чтобы быть в тренде в своей области, достаточно подписаться на инфлюенсеров в Твиттере и читать релевантные статьи на arXiv.org. Но у нас появилась возможность съездить на International Conference on Computer Vision (ICCV) 2019. В этом году она проводится в Южной Корее. Теперь мы хотим поделиться с читателями Хабра тем, что мы увидели и узнали.
Читать полностью »

Хайлайты и тренды ICCV 2019 - 1

Нейросети в компьютерном зрении активно развиваются, многие задачи еще далеки от решения. Чтобы быть в тренде в своей области, достаточно подписаться на инфлюенсеров в Твиттере и читать релевантные статьи на arXiv.org. Но у нас появилась возможность съездить на Internatinal Conference on Computer Vision (ICCV) 2019. В этом году она проводится в Южной Корее. Теперь мы хотим поделиться с читателями Хабра тем, что мы увидели и узнали.
Читать полностью »

Прошло лет пять с того момента как нейронные сетки начали втыкать в каждую дырку. Есть масса примеров где всё работает почти идеально — биометрия, распознавание технической информации (номера, коды), классификация и поиск в массиве данных.

Есть области где всё хуже, но сейчас идёт большой прогресс — речь/распознавание текстов, переводы.

Машинное зрение и медицина - 1

Но есть области загадочные. Вроде как и прогресс есть. И статьи регулярно выходят. Только вот до практического применения как-то особо и не доходит.

Давайте разберём то, как нейронные сеточки и машинное зрение работает в медицине.
Читать полностью »

Введение

Данная статья является продолжением серии статей описывающей алгоритмы лежащие в основе
Synet — фреймворка для запуска предварительно обученных нейронных сетей на CPU.

Если смотреть на распределение процессорного времени, которое тратится на прямое распространение сигнала в нейронных сетях, то окажется что зачастую более 90% всего времени тратится в сверточных слоях. Поэтому если мы хотим получить быстрый алгоритм для нейронной сети – нам нужен, прежде всего, быстрый алгоритм для сверточного слоя. В настоящей статье я хочу описать методы оптимизации прямого распространения сигнала в сверточном слое. Причем начать хочется с наиболее широко распространенных методов, основанных на матричном умножении. Изложение я буду стараться вести в максимально доступной форме, чтобы статья была интересна не только специалистам (они и так про это все знают), но и более широкому кругу читателей. Я не претендую на полноту обзора, так что любые замечания и дополнения только приветствуются.
Читать полностью »

image

Решил я поискать работы Sci-Fi-художников прошлого и настоящего, которые рисовали реактивные ранцы. Нашел группу в ВК «Музей будущего», а там — 15 000 фотографий. Пришлось пересмотреть все вручную, навыбирал несколько десятков с джетпакоподбными аппаратами, а потом задумался, а как же бедные фотографы? Или прочие товарищи, которые работают с тоннами фото/аудио/видео, да еще не в одиночку, а командами, удаленно и пр и пр.

Поспрашивал у знакомых фотографов — они пользуются эдаким миксом лайтрума, гуглдрайва и съемных жестких дисков. Говорят, полный ад.

Поинтересовался у знакомой, которая коммьюнити-менеджер русскоязычного сообщества игр крупной компании в гейм-индустрии на букву «B». Им нужно каталогизировать и искать среди огромного количества аудио- и видео-материалов. Создают много трейлеров к видео, game captures, звуковых эффектов, музыки. Куча файлов, относящихся к разным проектам, которые нужно побороть для дальнейшего кросс-проектного поиска. Не столько важно быстро находить, сколько находить в принципе.

Спросил ещё у архитекторов, у которого в базе 120 000 фоток объектов, как они живут с этим.

Оказывается вся эта область называется digital asset management. Вот список с рейтингами 30+ решений для управления цифровыми ресурсами (англ).
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js