Рубрика «обработка естественного языка» - 2

Привет. Я последние пару лет играюсь с естественной речью на русском языке. Решил поделиться своим опытом по работе с поэзией. Будет две статьи: вот эта и про рифму (когда дойдут руки всё доделать).

Половина программистов, прочитав заголовок, скорее всего подумала, что задача очень простая: сравнить две маски. Но есть нюансы, которые сильно влияют на результат, и о них то я и расскажу.

Немного теории

Речь пойдёт о так называемом силлабо-тоническом стихосложенииЧитать полностью »

NLI (natural language inference) – это задача автоматического определения логической связи между текстами. Обычно она формулируется так: для двух утверждений A и B надо выяснить, следует ли B из A. Эта задача сложная, потому что она требует хорошо понимать смысл текстов. Эта задача полезная, потому что "понимательную" способность модели можно эксплуатировать для прикладных задач типа классификации текстов. Иногда такая классификация неплохо работает даже без обучающей выборки!

До сих пор в открытом доступе не было нейросетей, специализированных на задаче NLI для русского языка, но теперь я обучил целых три: Читать полностью »

Начну, пожалуй, с представления читателя этой статьи, так как ничто не приковывает внимание к тексту более, чем сопереживание главному герою, тем более, в его роли сейчас выступаете Вы. Вероятно, услышав или прочитав однажды словосочетание "логическое программирование" и преисполнившись интересом, Вы как настоящий или будущий программист направились в Google. Первая ссылка, разумеется, ведёт на Википедию - читаем определение:

Читать полностью »

TL;DR: перевод поста Chaitanya Joshi "Transformers are Graph Neural Networks": схемы, формулы, идеи, важные ссылки. Публикуется с любезного разрешения автора.

Друзья-датасаентисты часто задают один и тот же вопрос: графовые нейронные сети (Graph Neural Networks) — прекрасная идея, но были ли у них хоть какие-то настоящие истории успеха? Есть ли у них какие-нибудь полезные на практике приложения?

Трансформеры как графовые нейронные сети - 1

Можно привести в пример и без того известные варианты — рекомендательные системы в Pinterest, Alibaba и Twitter. Но есть и более хитрая история успеха: штурмом взявшая промышленную обработку естественного языка архитектура Transformer.

В этом посте мне бы хотелось установить связи между графовыми нейронными сетями и трансформерами (Transformers). Мы поговорим об интуитивном обосновании архитектур моделей в NLP- и GNN-сообществах, покажем их связь на языке формул и уравнений и порассуждаем, как оба "мира" могут объединить усилия, чтобы продвинуть прогресс.

Читать полностью »

Всем привет!

Huawei Russian Research Institute (Huawei RRI) в рамках программы взаимодействия с ведущими российскими университетами (МФТИ, МГУ, МГТУ им. Н. Э. Баумана) представляет открытый курс “Natural Language Processing” или “Обработка естественного языка”, который пройдет на площадке московского корпуса Физтеха.

Курс Natural Language Processing (обработка естественного языка) - 1Читать полностью »

Мы привычно пользуемся интернет-поиском, общаемся с чат-ботами, читаем документы на любых языках благодаря переводчикам. Приказать роботу-пылесосу начать уборку при помощи голоса? Ничего особенного… Для многих голосовые помощники на смартфоне вошли в повседневность. Будущее, в котором компьютер, прочитав постороннюю заметку о футболе, соответствующим образом меняет тональность новости о погоде, уже наступило.

Как это всё работает? Как стать специалистом в NLP (расшифровывается Natural Language Processing, не путайте с нейролингвистическим программированием:) )?

Тех, кто задается такими вопросами, мы приглашаем на открывшийся недавно онлайн- курс Samsung Research Russia. Под катом подробности…
Новый бесплатный онлайн-курс от Samsung по анализу текста при помощи нейросетей - 1
Авторы курса “Нейронные сети и обработка текста”
Читать полностью »

Распознаём дату и время в естественной речи - 1

Задача

Привет! Увлёкся я навыками для Алисы и стал думать, какую пользу они бы могли принести. На площадке много разных прикольных игр (в том числе мои), но вот захотелось сделать рабочий инструмент, который действительно нужен в голосовом исполнении, а не просто копирует существующего чат-бота с кнопками.

Голос актуален тогда, когда либо руки заняты, либо нужно выполнять много последовательных операций, особенно на экране телефона. Так возникла идея навыка, который по одной команде выделяет из текста указание на дату и время и добавляет событие с этим текстом в Google Calendar. Например, если пользователь скажет Послезавтра в 11 вечера будет красивый закат, то в календарь на послезавтра в 23:00 уходит строка Будет красивый закат.

Под катом описание алгоритма работы библиотеки Hors: распознавателя даты и времени в естественной русской речи. Хорс — это славянский бог солнца.

Github | NuGet

Читать полностью »

Вступление

Обработка естественного языка (NLP) является популярной и важной областью машинного обучения. В данном хабре я опишу свой первый проект, связанный с анализом эмоциональной окраски кино отзывов, написанный на Python. Задача сентиментного анализа является довольно распространенной среди тех, кто желает освоить базовые концепции NLP, и может стать аналогом 'Hello world' в этой области.

В этой статье мы пройдем все основные этапы процесса Data Science: от создания собственного датасета, его обработки и извлечения признаков с помощью библиотеки NLTK и наконец обучения и настройки модели с помощью scikit-learn. Сама задача состоит в классификации отзывов на три класса: негативные, нейтральные и позитивные.
Читать полностью »

XLNet против BERT - 1

В конце июня коллектив из Carnegie Mellon University показал нам XLNet, сразу выложив публикацию, код и готовую модель (XLNet-Large, Cased: 24-layer, 1024-hidden, 16-heads). Это предобученная модель для решения разных задач обработки естественного языка.

В публикации они сразу же обозначили сравнение своей модели с гугловым BERT-ом. Они пишут, что XLNet превосходит BERT в большом количестве задач. И показывает в 18 задачах state-of-the-art результаты.
Читать полностью »

Обработка естественного языка сейчас не используются разве что в совсем консервативных отраслях. В большинстве технологических решений распознавание и обработка «человеческих» языков давно внедрена: именно поэтому обычный IVR с жестко заданными опциями ответов постепенно уходит в прошлое, чатботы начинают все адекватнее общаться без участия живого оператора, фильтры в почте работают на ура и т.д. Как же происходит распознавание записанной речи, то есть текста? А вернее будет спросить, что лежит в основе соврменных техник распознавания и обработки? На это хорошо отвечает наш сегодняшний адаптированный перевод – под катом вас ждет лонгрид, который закроет пробелы по основам NLP. Приятного чтения!

Основы Natural Language Processing для текста - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js