Рубрика «обработка данных» - 2

По запросу R или Python в интернете вы найдёте миллионы статей и километровых обсуждений по теме какой из них лучше, быстрее и удобнее для работы с данными. Но к сожалению особой пользы все эти статьи и споры не несут.

Какой язык выбрать для работы с данными — R или Python? Оба! Мигрируем с pandas на tidyverse и data.table и обратно - 1

Цель этой статьи — сравнить основные приёмы обработки данных в наиболее популярных пакетах обоих языков. И помочь читателям максимально быстро овладеть тем, который они ещё не знают. Для тех кто пишет на Python узнать как выполнять всё то же самое в R, и соответственно наоборот.

В ходе статьи мы разберём синтаксис наиболее популярных пакетов на R. Это пакеты входящие в библиотеку tidyverse, а также пакет data.table. И сравним их синтаксис с pandas, наиболее популярным пакетом для анализа данных в Python.

Мы пошагово пройдём весь путь анализа данных от их загрузки до выполнения аналитических, оконных функций средствами Python и R.

Читать полностью »

В части первой описывалось, что данная публикация сделана на основе датасета результатов кадастровой оценки объектов недвижимости в Ханты-Мансийском АО.

Практическая часть представлена в виде шагов. Проводилась вся очистка в Excel, так как самый распространенный инструмент и описанные операции может повторить большинство специалистов знающих Excel. И достаточно неплохо подходит для работы в «рукопашную».

Нулевым этапом поставлю работы по запуску, сохранению файла, так как он размером 100 мб, то при количестве этих операций десятки и сотни на них уходит существенное время.
Открытие, в среднем, — 30 сек.
Сохранение – 22 сек.

Первый этап начинается с определения статистических показателей датасета.

Таблица 1. Статпоказатели датасета
Очистка данных, как игра «Камень, Ножницы, Бумага». Это игра с финишем или без? Часть 2. Практическая - 1
Читать полностью »

Пилотный проект по обработке высокоплотных сейсмических данных с использованием сервиса MCS - 1

Компания ООО НПЦ «Геостра» с помощью сервиса MCS провела камеральную обработку сейсмической информации — 40 Тб высокоплотной съёмки МОГТ-3D. О реализации, нюансах и результатах проекта будет рассказано в данной статье.
Читать полностью »

Перед вами перевод статьи из блога Seattle Data Guy. В ней авторы выделили 5 наиболее популярных ресурсов для обработки Big Data на текущий момент.

От Hadoop до Cassandra: 5 лучших инструментов для работы с Big Data - 1

Сегодня любая компания, независимо от ее размера и местоположения, так или иначе имеет дело с данными. Использование информации в качестве ценного ресурса, в свою очередь, подразумевает применение специальных инструментов для анализа ключевых показателей деятельности компании. Спрос на аналитику растет пропорционально ее значимости, и уже сейчас можно определить мировые тенденции и перспективы в этом секторе. Согласно мнению International Data Corporation, в 2019 году рынок Big Data и аналитики готов перешагнуть порог в 189,1 миллиарда долларов.Читать полностью »

Парсим 25Tb с помощью AWK и R - 1

Как читать эту статью: прошу прощения за то, что текст получился таким длинным и хаотичным. Чтобы сэкономить ваше время, я каждую главу начинаю со вступления «Чему я научился», в котором одним-двумя предложениями излагаю суть главы.

«Просто покажи решение!» Если вы хотите всего лишь увидеть, к чему я пришёл, то переходите к главе «Становлюсь изобретательнее», но я считаю, что интереснее и полезнее почитать про неудачи.

Недавно мне поручили настроить процесс обработки большого объёма исходных последовательностей ДНК (технически это SNP-чип). Нужно было быстро получать данные о заданном генетическом местоположении (которое называется SNP) для последующего моделирования и прочих задач. С помощью R и AWK мне удалось очистить и организовать данные естественным образом, сильно ускорив обработку запросов. Далось мне это нелегко и потребовало многочисленных итераций. Эта статья поможет вам избежать некоторых моих ошибок и продемонстрирует, что же у меня в конце концов получилось.
Читать полностью »

Добрый день.

В открытом доступе наконец-то появился огромный справочник штрихкодов с наименованиями товаров, категориями и брендами.

Мы работаем над ним лет 8 и теперь в нем около 3 миллионов штрихкодов в стандартах EAN (EAN-13, EAN-8) и UPC (UPC-A, UPC-E).

Читать полностью »

По роду деятельности (автоматизация процессов и разработка архитектуры информационных систем) часто приходится сталкиваться с необходимостью написать скрипт и получить результат «здесь и сейчас» для неожиданно «прилетевшей» задачи в ситуации, когда нет возможности оперативно привлечь внешних разработчиков.

Решению одной из таких задач будет посвящен обзор. В какой-то момент появилась необходимость проанализировать на основе открытых данных “Единого реестра субъектов малого и среднего предпринимательства” Федеральной налоговой службы (далее РМСП) динамику по месяцам количества организаций определенного вида деятельности, а именно, сельхозпредприятий. Подходы, которые использовались при ее решении, надеюсь будут полезны тем, кто ищет варианты обработки больших структурированных массивов данных XML, но распространенные средства обработки, например, приложения типа SelectFromXML, он-лайн XML обработчики по каким-то причинам не подходят. Либо ограничен функционал, либо возникают проблемы при работе с кириллической кодировкой, либо не обеспечивается необходимая производительность, либо ограничены ресурсы «железа». Программисты и профессионалы надеюсь не буду слишком строги к стилю кодирования и выбору способов реализации, а критика и советы в комментариях приветствуются.

Итак задача:
Читать полностью »

Любой измерительный прибор, будь то аналоговый или цифровой, показывает результат с определенной погрешностью и шумом. Погрешность GPS сенсора определяется погрешностью самого датчика и такими факторами как: ландшафт, скорость движения, количество и положение спутников.

В нашем приложении мы предоставляем пользователю возможность детально просмотреть маршруты его поездок. И если отображать сырые, не отфильтрованные данные, то получится, что маршрут проходит не по дороге, а через здания или по воде, некоторые точки маршрута сильно удалены от соседних или даже отсутствуют куски маршрута.

Map matching и обработка сырых данных GPS в промышленных масштабах - 1

Думаю, ни для кого не секрет, что на рынке есть решения, которые предоставляют сервис Map matching. Он выполняет обработку координат и в результате выдает координаты, привязанные к дороге. Однако, ни один сервис не будет понимать специфику ваших данных, а результат обработки сырых данных может быть не самым лучшим. В связи с этим нами было разработано решение, которое позволило максимально отфильтровать и наложить на дороги данные с датчиков.

Читать полностью »

В силу специфики научной деятельности мне нужно замерять время работы алгоритмов и строить по получившимся данным графики. Раньше процесс выглядел так:

  1. Алгоритм подготовлен.
  2. Запуск эксперимента, выходные данные идут в лог.
  3. Перенос данных в эксель.
  4. Постобработка: разбить, группировать, отсортировать.
  5. Строим график, а он кривой — ошибка в эксперименте, переход на шаг 1.

Первая проблема — просто посмотреть как прошел эксперимент занимало очень много времени.

Ладно, пережили, графики построили, время идет, готовим публикацию и выясняется, что в результатах экспериментов не сохранены некоторые параметры запуска алгоритма. Не доглядел. Это уже вторая проблема — хранение метаданных об эксперименте.

Меня как программиста всегда раздражала необходимость «ручной работы». Да график готов, но мы еще что-то вручную подвинем, там перекрасим, тут подрисуем. Каждый раз когда приходят новые данные этот процесс приходится повторять. Третья проблема — перестроение графиков должно быть полностью автоматизированным.

Для решения озвученных проблем я придумал формат хранения данных в JSON и назвал его Measurelook. В этой статье я расскажу о Measurelook и о его применении в подготовке научной публикации.

Как я придумывал и применял формат хранения результатов экспериментов Measurelook - 1

Читать полностью »

Нужен был способ дать машине память, чтобы она могла, в терминологии Тьюринга, быстро зарывать данные и так же быстро их выкапывать.
Нил Стивенсон, «Криптономикон»

IMDG
Фото модуля памяти на магнитных сердечниках в мейнфрейме IBM 1401, использованное в качестве фона на этом изображении, напоминает нам о временах, когда компьютеры были большими, а память — дорогой. Сегодня, как мы узнаем из поста ниже, все поменялось...

IMDG, гриды, In-Memory Data Grids — как только не называют системы, которые оказались темой поста. И хотя название совершенно правдиво, да и гриды, как инструмент, всё более популярны, многие до сих пор путают их то с системами распределённых кэшей, то с NoSQL-базами данных, а то и вовсе полагают, что «если разместить MySQL на RAM-диске, то получится почти IMDG».

Ещё не так давно решение накапливать информацию, а уже после её обрабатывать, казалось логичным, а появившиеся языки запросов к хранилищам информации выглядели отличным решением: каждая стадия процесса работы с информацией была выделенной и достаточно хорошо контролируемой. Но времена меняются, и сегодня всё чаще бизнес заявляет о желании обрабатывать информацию не «вчерашнюю», а текущую, в буквальном смысле иметь «обработку в онлайне», причём по отношению к информации достаточно больших объёмов. И здесь, хотим мы этого или нет, мы вынуждены искать новые инструменты.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js