Рубрика «object detection» - 2

Привет, читатели. Сегодняшний пост будет о том, как не затеряться в дебрях многообразия вариантов использования TensorFlow для машинного обучения и достигнуть своей цели. Статья рассчитана на то, что читатель знает основы принципов работы машинного обучения, но пока еще не пробовал это делать своими руками. В итоге мы получим работающее демо на Андроиде, которое кое-что распознает с довольно высокой точностью. Но обо всем по порядку.

Как разобраться в Tensorflow и не умереть, а даже научить чему-то машину - 1

Читать полностью »

Скорее всего, вы слышали об авторе этой лекции. Владимир ternaus Игловиков занял второе место в британском Data Science Challenge, но организаторы конкурса не стали выплачивать ему денежный приз из-за его российского гражданства. Затем наши коллеги из Mail.Ru Group взяли выплату приза на себя, а Владимир, в свою очередь, попросил перечислить деньги в Российский Научный Фонд. История получила широкий охват в СМИ.

Спустя несколько недель Владимир выступил на одной из тренировок Яндекса по машинному обучению. Он рассказал о своём подходе к участию в конкурсах, о сути Data Science Challenge и о решении, которое позволило ему занять второе место.

Читать полностью »

image

Сразу оговорюсь, что данный пост не несет большой технической нагрузки и должен восприниматься исключительно в режиме «пятничной истории». Кроме того, текст насыщен английскими словами, какие-то из них я не знаю как перевести, а какие-то просто не хочется переводить.

Краткое содержание первой части:
1. DSTL (научно-техническая лаборатория при министерстве обороны Великобритании) провела соревнование на Kaggle.
2. Соревнование закончилось 7 марта, результаты объявлены 14 марта.
3. Пять из десяти лучших команд — русскоговорящие, причем все они являются членами сообщества Open Data Science.
4. Призовой фонд в $100,000 разделили брутальный малазиец Kyle, команда Романа Соловьева и Артура Кузина, а также я и Сергей Мушинский.
5. По итогам были написаны блог-посты (мой пост, пост Артура, наш с Серегой пост на Kaggle), проведены выступления на митапах (мое выступление в Adroll, мое выстпление в H20.ai, выступление Артура в Yandex, выступление Евгения Некрасова в Mail.Ru Group), написан tech report на arxiv.

Организаторам понравилось качество предложенных решений, но не понравилось, сколько они за это соревнование отстегнули. В Каggle ушло $500k, в то время как призовые всего $100k.
Читать полностью »

Фильтрация ложных соответствий между изображениями при помощи динамического графа соответсивий
Многие современные алгоритмы компьютерного зрения строятся на основе детектирования и сопоставления особых точек визуальных образов. По этой теме было написано немало статей на хабре(например SURF, SIFT). Но в большинстве работ не уделяется должного вниманию такому важному этапу, как фильтрация ложных соответствий между изображениями. Чаще всего для этих целей применяют RANSAC-метод и на этом останавливаются. Но это не единственный подход для решения данной задачи.
Данная статья посвящена одному из альтернативных способов фильтрации ложных соответствий.
Читать полностью »

Фильтрация ложных соответствий между изображениями при помощи динамического графа соответствий
Многие современные алгоритмы компьютерного зрения строятся на основе детектирования и сопоставления особых точек визуальных образов. По этой теме было написано немало статей на хабре(например SURF, SIFT). Но в большинстве работ не уделяется должного вниманию такому важному этапу, как фильтрация ложных соответствий между изображениями. Чаще всего для этих целей применяют RANSAC-метод и на этом останавливаются. Но это не единственный подход для решения данной задачи.
Данная статья посвящена одному из альтернативных способов фильтрации ложных соответствий.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js